/** @fileOverview Javascript cryptography implementation. * * Crush to remove comments, shorten variable names and * generally reduce transmission size. * * @author Emily Stark * @author Mike Hamburg * @author Dan Boneh */ "use strict"; /*jslint indent: 2, bitwise: false, nomen: false, plusplus: false, white: false, regexp: false */ /*global document, window, escape, unescape */ /** @namespace The Stanford Javascript Crypto Library, top-level namespace. */ var sjcl = { /** @namespace Symmetric ciphers. */ cipher: {}, /** @namespace Hash functions. Right now only SHA256 is implemented. */ hash: {}, /** @namespace Key exchange functions. Right now only SRP is implemented. */ keyexchange: {}, /** @namespace Block cipher modes of operation. */ mode: {}, /** @namespace Miscellaneous. HMAC and PBKDF2. */ misc: {}, /** * @namespace Bit array encoders and decoders. * * @description * The members of this namespace are functions which translate between * SJCL's bitArrays and other objects (usually strings). Because it * isn't always clear which direction is encoding and which is decoding, * the method names are "fromBits" and "toBits". */ codec: {}, /** @namespace Exceptions. */ exception: { /** @constructor Ciphertext is corrupt. */ corrupt: function(message) { this.toString = function() { return "CORRUPT: "+this.message; }; this.message = message; }, /** @constructor Invalid parameter. */ invalid: function(message) { this.toString = function() { return "INVALID: "+this.message; }; this.message = message; }, /** @constructor Bug or missing feature in SJCL. @constructor */ bug: function(message) { this.toString = function() { return "BUG: "+this.message; }; this.message = message; }, /** @constructor Something isn't ready. */ notReady: function(message) { this.toString = function() { return "NOT READY: "+this.message; }; this.message = message; } } }; if(typeof module != 'undefined' && module.exports){ module.exports = sjcl; } /** @fileOverview Low-level AES implementation. * * This file contains a low-level implementation of AES, optimized for * size and for efficiency on several browsers. It is based on * OpenSSL's aes_core.c, a public-domain implementation by Vincent * Rijmen, Antoon Bosselaers and Paulo Barreto. * * An older version of this implementation is available in the public * domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh, * Stanford University 2008-2010 and BSD-licensed for liability * reasons. * * @author Emily Stark * @author Mike Hamburg * @author Dan Boneh */ /** * Schedule out an AES key for both encryption and decryption. This * is a low-level class. Use a cipher mode to do bulk encryption. * * @constructor * @param {Array} key The key as an array of 4, 6 or 8 words. * * @class Advanced Encryption Standard (low-level interface) */ sjcl.cipher.aes = function (key) { if (!this._tables[0][0][0]) { this._precompute(); } var i, j, tmp, encKey, decKey, sbox = this._tables[0][4], decTable = this._tables[1], keyLen = key.length, rcon = 1; if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) { throw new sjcl.exception.invalid("invalid aes key size"); } this._key = [encKey = key.slice(0), decKey = []]; // schedule encryption keys for (i = keyLen; i < 4 * keyLen + 28; i++) { tmp = encKey[i-1]; // apply sbox if (i%keyLen === 0 || (keyLen === 8 && i%keyLen === 4)) { tmp = sbox[tmp>>>24]<<24 ^ sbox[tmp>>16&255]<<16 ^ sbox[tmp>>8&255]<<8 ^ sbox[tmp&255]; // shift rows and add rcon if (i%keyLen === 0) { tmp = tmp<<8 ^ tmp>>>24 ^ rcon<<24; rcon = rcon<<1 ^ (rcon>>7)*283; } } encKey[i] = encKey[i-keyLen] ^ tmp; } // schedule decryption keys for (j = 0; i; j++, i--) { tmp = encKey[j&3 ? i : i - 4]; if (i<=4 || j<4) { decKey[j] = tmp; } else { decKey[j] = decTable[0][sbox[tmp>>>24 ]] ^ decTable[1][sbox[tmp>>16 & 255]] ^ decTable[2][sbox[tmp>>8 & 255]] ^ decTable[3][sbox[tmp & 255]]; } } }; sjcl.cipher.aes.prototype = { // public /* Something like this might appear here eventually name: "AES", blockSize: 4, keySizes: [4,6,8], */ /** * Encrypt an array of 4 big-endian words. * @param {Array} data The plaintext. * @return {Array} The ciphertext. */ encrypt:function (data) { return this._crypt(data,0); }, /** * Decrypt an array of 4 big-endian words. * @param {Array} data The ciphertext. * @return {Array} The plaintext. */ decrypt:function (data) { return this._crypt(data,1); }, /** * The expanded S-box and inverse S-box tables. These will be computed * on the client so that we don't have to send them down the wire. * * There are two tables, _tables[0] is for encryption and * _tables[1] is for decryption. * * The first 4 sub-tables are the expanded S-box with MixColumns. The * last (_tables[01][4]) is the S-box itself. * * @private */ _tables: [[[],[],[],[],[]],[[],[],[],[],[]]], /** * Expand the S-box tables. * * @private */ _precompute: function () { var encTable = this._tables[0], decTable = this._tables[1], sbox = encTable[4], sboxInv = decTable[4], i, x, xInv, d=[], th=[], x2, x4, x8, s, tEnc, tDec; // Compute double and third tables for (i = 0; i < 256; i++) { th[( d[i] = i<<1 ^ (i>>7)*283 )^i]=i; } for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) { // Compute sbox s = xInv ^ xInv<<1 ^ xInv<<2 ^ xInv<<3 ^ xInv<<4; s = s>>8 ^ s&255 ^ 99; sbox[x] = s; sboxInv[s] = x; // Compute MixColumns x8 = d[x4 = d[x2 = d[x]]]; tDec = x8*0x1010101 ^ x4*0x10001 ^ x2*0x101 ^ x*0x1010100; tEnc = d[s]*0x101 ^ s*0x1010100; for (i = 0; i < 4; i++) { encTable[i][x] = tEnc = tEnc<<24 ^ tEnc>>>8; decTable[i][s] = tDec = tDec<<24 ^ tDec>>>8; } } // Compactify. Considerable speedup on Firefox. for (i = 0; i < 5; i++) { encTable[i] = encTable[i].slice(0); decTable[i] = decTable[i].slice(0); } }, /** * Encryption and decryption core. * @param {Array} input Four words to be encrypted or decrypted. * @param dir The direction, 0 for encrypt and 1 for decrypt. * @return {Array} The four encrypted or decrypted words. * @private */ _crypt:function (input, dir) { if (input.length !== 4) { throw new sjcl.exception.invalid("invalid aes block size"); } var key = this._key[dir], // state variables a,b,c,d are loaded with pre-whitened data a = input[0] ^ key[0], b = input[dir ? 3 : 1] ^ key[1], c = input[2] ^ key[2], d = input[dir ? 1 : 3] ^ key[3], a2, b2, c2, nInnerRounds = key.length/4 - 2, i, kIndex = 4, out = [0,0,0,0], table = this._tables[dir], // load up the tables t0 = table[0], t1 = table[1], t2 = table[2], t3 = table[3], sbox = table[4]; // Inner rounds. Cribbed from OpenSSL. for (i = 0; i < nInnerRounds; i++) { a2 = t0[a>>>24] ^ t1[b>>16 & 255] ^ t2[c>>8 & 255] ^ t3[d & 255] ^ key[kIndex]; b2 = t0[b>>>24] ^ t1[c>>16 & 255] ^ t2[d>>8 & 255] ^ t3[a & 255] ^ key[kIndex + 1]; c2 = t0[c>>>24] ^ t1[d>>16 & 255] ^ t2[a>>8 & 255] ^ t3[b & 255] ^ key[kIndex + 2]; d = t0[d>>>24] ^ t1[a>>16 & 255] ^ t2[b>>8 & 255] ^ t3[c & 255] ^ key[kIndex + 3]; kIndex += 4; a=a2; b=b2; c=c2; } // Last round. for (i = 0; i < 4; i++) { out[dir ? 3&-i : i] = sbox[a>>>24 ]<<24 ^ sbox[b>>16 & 255]<<16 ^ sbox[c>>8 & 255]<<8 ^ sbox[d & 255] ^ key[kIndex++]; a2=a; a=b; b=c; c=d; d=a2; } return out; } }; /** @fileOverview Arrays of bits, encoded as arrays of Numbers. * * @author Emily Stark * @author Mike Hamburg * @author Dan Boneh */ /** @namespace Arrays of bits, encoded as arrays of Numbers. * * @description *

* These objects are the currency accepted by SJCL's crypto functions. *

* *

* Most of our crypto primitives operate on arrays of 4-byte words internally, * but many of them can take arguments that are not a multiple of 4 bytes. * This library encodes arrays of bits (whose size need not be a multiple of 8 * bits) as arrays of 32-bit words. The bits are packed, big-endian, into an * array of words, 32 bits at a time. Since the words are double-precision * floating point numbers, they fit some extra data. We use this (in a private, * possibly-changing manner) to encode the number of bits actually present * in the last word of the array. *

* *

* Because bitwise ops clear this out-of-band data, these arrays can be passed * to ciphers like AES which want arrays of words. *

*/ sjcl.bitArray = { /** * Array slices in units of bits. * @param {bitArray} a The array to slice. * @param {Number} bstart The offset to the start of the slice, in bits. * @param {Number} bend The offset to the end of the slice, in bits. If this is undefined, * slice until the end of the array. * @return {bitArray} The requested slice. */ bitSlice: function (a, bstart, bend) { a = sjcl.bitArray._shiftRight(a.slice(bstart/32), 32 - (bstart & 31)).slice(1); return (bend === undefined) ? a : sjcl.bitArray.clamp(a, bend-bstart); }, /** * Extract a number packed into a bit array. * @param {bitArray} a The array to slice. * @param {Number} bstart The offset to the start of the slice, in bits. * @param {Number} length The length of the number to extract. * @return {Number} The requested slice. */ extract: function(a, bstart, blength) { // FIXME: this Math.floor is not necessary at all, but for some reason // seems to suppress a bug in the Chromium JIT. var x, sh = Math.floor((-bstart-blength) & 31); if ((bstart + blength - 1 ^ bstart) & -32) { // it crosses a boundary x = (a[bstart/32|0] << (32 - sh)) ^ (a[bstart/32+1|0] >>> sh); } else { // within a single word x = a[bstart/32|0] >>> sh; } return x & ((1< 0 && len) { a[l-1] = sjcl.bitArray.partial(len, a[l-1] & 0x80000000 >> (len-1), 1); } return a; }, /** * Make a partial word for a bit array. * @param {Number} len The number of bits in the word. * @param {Number} x The bits. * @param {Number} [0] _end Pass 1 if x has already been shifted to the high side. * @return {Number} The partial word. */ partial: function (len, x, _end) { if (len === 32) { return x; } return (_end ? x|0 : x << (32-len)) + len * 0x10000000000; }, /** * Get the number of bits used by a partial word. * @param {Number} x The partial word. * @return {Number} The number of bits used by the partial word. */ getPartial: function (x) { return Math.round(x/0x10000000000) || 32; }, /** * Compare two arrays for equality in a predictable amount of time. * @param {bitArray} a The first array. * @param {bitArray} b The second array. * @return {boolean} true if a == b; false otherwise. */ equal: function (a, b) { if (sjcl.bitArray.bitLength(a) !== sjcl.bitArray.bitLength(b)) { return false; } var x = 0, i; for (i=0; i= 32; shift -= 32) { out.push(carry); carry = 0; } if (shift === 0) { return out.concat(a); } for (i=0; i>>shift); carry = a[i] << (32-shift); } last2 = a.length ? a[a.length-1] : 0; shift2 = sjcl.bitArray.getPartial(last2); out.push(sjcl.bitArray.partial(shift+shift2 & 31, (shift + shift2 > 32) ? carry : out.pop(),1)); return out; }, /** xor a block of 4 words together. * @private */ _xor4: function(x,y) { return [x[0]^y[0],x[1]^y[1],x[2]^y[2],x[3]^y[3]]; } }; /** @fileOverview Bit array codec implementations. * * @author Emily Stark * @author Mike Hamburg * @author Dan Boneh */ /** @namespace UTF-8 strings */ sjcl.codec.utf8String = { /** Convert from a bitArray to a UTF-8 string. */ fromBits: function (arr) { var out = "", bl = sjcl.bitArray.bitLength(arr), i, tmp; for (i=0; i>> 24); tmp <<= 8; } return decodeURIComponent(escape(out)); }, /** Convert from a UTF-8 string to a bitArray. */ toBits: function (str) { str = unescape(encodeURIComponent(str)); var out = [], i, tmp=0; for (i=0; i>>bits) >>> 26); if (bits < 6) { ta = arr[i] << (6-bits); bits += 26; i++; } else { ta <<= 6; bits -= 6; } } while ((out.length & 3) && !_noEquals) { out += "="; } return out; }, /** Convert from a base64 string to a bitArray */ toBits: function(str, _url) { str = str.replace(/\s|=/g,''); var out = [], i, bits=0, c = sjcl.codec.base64._chars, ta=0, x; if (_url) c = c.substr(0,62) + '-_'; for (i=0; i 26) { bits -= 26; out.push(ta ^ x>>>bits); ta = x << (32-bits); } else { bits += 6; ta ^= x << (32-bits); } } if (bits&56) { out.push(sjcl.bitArray.partial(bits&56, ta, 1)); } return out; } }; sjcl.codec.base64url = { fromBits: function (arr) { return sjcl.codec.base64.fromBits(arr,1,1); }, toBits: function (str) { return sjcl.codec.base64.toBits(str,1); } }; /** @fileOverview Bit array codec implementations. * * @author Emily Stark * @author Mike Hamburg * @author Dan Boneh */ /** @namespace Arrays of bytes */ sjcl.codec.bytes = { /** Convert from a bitArray to an array of bytes. */ fromBits: function (arr) { var out = [], bl = sjcl.bitArray.bitLength(arr), i, tmp; for (i=0; i>> 24); tmp <<= 8; } return out; }, /** Convert from an array of bytes to a bitArray. */ toBits: function (bytes) { var out = [], i, tmp=0; for (i=0; i>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) + (b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) + w[i&15] + w[(i+9) & 15]) | 0; } tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0; // shift register h7 = h6; h6 = h5; h5 = h4; h4 = h3 + tmp | 0; h3 = h2; h2 = h1; h1 = h0; h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0; } h[0] = h[0]+h0 | 0; h[1] = h[1]+h1 | 0; h[2] = h[2]+h2 | 0; h[3] = h[3]+h3 | 0; h[4] = h[4]+h4 | 0; h[5] = h[5]+h5 | 0; h[6] = h[6]+h6 | 0; h[7] = h[7]+h7 | 0; } }; /** @fileOverview Javascript SHA-512 implementation. * * This implementation was written for CryptoJS by Jeff Mott and adapted for * SJCL by Stefan Thomas. * * CryptoJS (c) 2009–2012 by Jeff Mott. All rights reserved. * Released with New BSD License * * @author Emily Stark * @author Mike Hamburg * @author Dan Boneh * @author Jeff Mott * @author Stefan Thomas */ /** * Context for a SHA-512 operation in progress. * @constructor * @class Secure Hash Algorithm, 512 bits. */ sjcl.hash.sha512 = function (hash) { if (!this._key[0]) { this._precompute(); } if (hash) { this._h = hash._h.slice(0); this._buffer = hash._buffer.slice(0); this._length = hash._length; } else { this.reset(); } }; /** * Hash a string or an array of words. * @static * @param {bitArray|String} data the data to hash. * @return {bitArray} The hash value, an array of 16 big-endian words. */ sjcl.hash.sha512.hash = function (data) { return (new sjcl.hash.sha512()).update(data).finalize(); }; sjcl.hash.sha512.prototype = { /** * The hash's block size, in bits. * @constant */ blockSize: 1024, /** * Reset the hash state. * @return this */ reset:function () { this._h = this._init.slice(0); this._buffer = []; this._length = 0; return this; }, /** * Input several words to the hash. * @param {bitArray|String} data the data to hash. * @return this */ update: function (data) { if (typeof data === "string") { data = sjcl.codec.utf8String.toBits(data); } var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data), ol = this._length, nl = this._length = ol + sjcl.bitArray.bitLength(data); for (i = 1024+ol & -1024; i <= nl; i+= 1024) { this._block(b.splice(0,32)); } return this; }, /** * Complete hashing and output the hash value. * @return {bitArray} The hash value, an array of 16 big-endian words. */ finalize:function () { var i, b = this._buffer, h = this._h; // Round out and push the buffer b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]); // Round out the buffer to a multiple of 32 words, less the 4 length words. for (i = b.length + 4; i & 31; i++) { b.push(0); } // append the length b.push(0); b.push(0); b.push(Math.floor(this._length / 0x100000000)); b.push(this._length | 0); while (b.length) { this._block(b.splice(0,32)); } this.reset(); return h; }, /** * The SHA-512 initialization vector, to be precomputed. * @private */ _init:[], /** * Least significant 24 bits of SHA512 initialization values. * * Javascript only has 53 bits of precision, so we compute the 40 most * significant bits and add the remaining 24 bits as constants. * * @private */ _initr: [ 0xbcc908, 0xcaa73b, 0x94f82b, 0x1d36f1, 0xe682d1, 0x3e6c1f, 0x41bd6b, 0x7e2179 ], /* _init: [0x6a09e667, 0xf3bcc908, 0xbb67ae85, 0x84caa73b, 0x3c6ef372, 0xfe94f82b, 0xa54ff53a, 0x5f1d36f1, 0x510e527f, 0xade682d1, 0x9b05688c, 0x2b3e6c1f, 0x1f83d9ab, 0xfb41bd6b, 0x5be0cd19, 0x137e2179], */ /** * The SHA-512 hash key, to be precomputed. * @private */ _key:[], /** * Least significant 24 bits of SHA512 key values. * @private */ _keyr: [0x28ae22, 0xef65cd, 0x4d3b2f, 0x89dbbc, 0x48b538, 0x05d019, 0x194f9b, 0x6d8118, 0x030242, 0x706fbe, 0xe4b28c, 0xffb4e2, 0x7b896f, 0x1696b1, 0xc71235, 0x692694, 0xf14ad2, 0x4f25e3, 0x8cd5b5, 0xac9c65, 0x2b0275, 0xa6e483, 0x41fbd4, 0x1153b5, 0x66dfab, 0xb43210, 0xfb213f, 0xef0ee4, 0xa88fc2, 0x0aa725, 0x03826f, 0x0e6e70, 0xd22ffc, 0x26c926, 0xc42aed, 0x95b3df, 0xaf63de, 0x77b2a8, 0xedaee6, 0x82353b, 0xf10364, 0x423001, 0xf89791, 0x54be30, 0xef5218, 0x65a910, 0x71202a, 0xbbd1b8, 0xd2d0c8, 0x41ab53, 0x8eeb99, 0x9b48a8, 0xc95a63, 0x418acb, 0x63e373, 0xb2b8a3, 0xefb2fc, 0x172f60, 0xf0ab72, 0x6439ec, 0x631e28, 0x82bde9, 0xc67915, 0x72532b, 0x26619c, 0xc0c207, 0xe0eb1e, 0x6ed178, 0x176fba, 0xc898a6, 0xf90dae, 0x1c471b, 0x047d84, 0xc72493, 0xc9bebc, 0x100d4c, 0x3e42b6, 0x657e2a, 0xd6faec, 0x475817], /* _key: [0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd, 0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc, 0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019, 0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118, 0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe, 0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2, 0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1, 0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694, 0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3, 0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65, 0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483, 0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5, 0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210, 0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4, 0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725, 0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70, 0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926, 0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df, 0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8, 0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b, 0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001, 0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30, 0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910, 0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8, 0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53, 0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8, 0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb, 0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3, 0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60, 0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec, 0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9, 0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b, 0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207, 0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178, 0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6, 0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b, 0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493, 0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c, 0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a, 0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817], */ /** * Function to precompute _init and _key. * @private */ _precompute: function () { // XXX: This code is for precomputing the SHA256 constants, change for // SHA512 and re-enable. var i = 0, prime = 2, factor; function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; } function frac2(x) { return (x-Math.floor(x)) * 0x10000000000 & 0xff; } outer: for (; i<80; prime++) { for (factor=2; factor*factor <= prime; factor++) { if (prime % factor === 0) { // not a prime continue outer; } } if (i<8) { this._init[i*2] = frac(Math.pow(prime, 1/2)); this._init[i*2+1] = (frac2(Math.pow(prime, 1/2)) << 24) | this._initr[i]; } this._key[i*2] = frac(Math.pow(prime, 1/3)); this._key[i*2+1] = (frac2(Math.pow(prime, 1/3)) << 24) | this._keyr[i]; i++; } }, /** * Perform one cycle of SHA-512. * @param {bitArray} words one block of words. * @private */ _block:function (words) { var i, wrh, wrl, w = words.slice(0), h = this._h, k = this._key, h0h = h[ 0], h0l = h[ 1], h1h = h[ 2], h1l = h[ 3], h2h = h[ 4], h2l = h[ 5], h3h = h[ 6], h3l = h[ 7], h4h = h[ 8], h4l = h[ 9], h5h = h[10], h5l = h[11], h6h = h[12], h6l = h[13], h7h = h[14], h7l = h[15]; // Working variables var ah = h0h, al = h0l, bh = h1h, bl = h1l, ch = h2h, cl = h2l, dh = h3h, dl = h3l, eh = h4h, el = h4l, fh = h5h, fl = h5l, gh = h6h, gl = h6l, hh = h7h, hl = h7l; for (i=0; i<80; i++) { // load up the input word for this round if (i<16) { wrh = w[i * 2]; wrl = w[i * 2 + 1]; } else { // Gamma0 var gamma0xh = w[(i-15) * 2]; var gamma0xl = w[(i-15) * 2 + 1]; var gamma0h = ((gamma0xl << 31) | (gamma0xh >>> 1)) ^ ((gamma0xl << 24) | (gamma0xh >>> 8)) ^ (gamma0xh >>> 7); var gamma0l = ((gamma0xh << 31) | (gamma0xl >>> 1)) ^ ((gamma0xh << 24) | (gamma0xl >>> 8)) ^ ((gamma0xh << 25) | (gamma0xl >>> 7)); // Gamma1 var gamma1xh = w[(i-2) * 2]; var gamma1xl = w[(i-2) * 2 + 1]; var gamma1h = ((gamma1xl << 13) | (gamma1xh >>> 19)) ^ ((gamma1xh << 3) | (gamma1xl >>> 29)) ^ (gamma1xh >>> 6); var gamma1l = ((gamma1xh << 13) | (gamma1xl >>> 19)) ^ ((gamma1xl << 3) | (gamma1xh >>> 29)) ^ ((gamma1xh << 26) | (gamma1xl >>> 6)); // Shortcuts var wr7h = w[(i-7) * 2]; var wr7l = w[(i-7) * 2 + 1]; var wr16h = w[(i-16) * 2]; var wr16l = w[(i-16) * 2 + 1]; // W(round) = gamma0 + W(round - 7) + gamma1 + W(round - 16) wrl = gamma0l + wr7l; wrh = gamma0h + wr7h + ((wrl >>> 0) < (gamma0l >>> 0) ? 1 : 0); wrl += gamma1l; wrh += gamma1h + ((wrl >>> 0) < (gamma1l >>> 0) ? 1 : 0); wrl += wr16l; wrh += wr16h + ((wrl >>> 0) < (wr16l >>> 0) ? 1 : 0); } w[i*2] = wrh |= 0; w[i*2 + 1] = wrl |= 0; // Ch var chh = (eh & fh) ^ (~eh & gh); var chl = (el & fl) ^ (~el & gl); // Maj var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch); var majl = (al & bl) ^ (al & cl) ^ (bl & cl); // Sigma0 var sigma0h = ((al << 4) | (ah >>> 28)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7)); var sigma0l = ((ah << 4) | (al >>> 28)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7)); // Sigma1 var sigma1h = ((el << 18) | (eh >>> 14)) ^ ((el << 14) | (eh >>> 18)) ^ ((eh << 23) | (el >>> 9)); var sigma1l = ((eh << 18) | (el >>> 14)) ^ ((eh << 14) | (el >>> 18)) ^ ((el << 23) | (eh >>> 9)); // K(round) var krh = k[i*2]; var krl = k[i*2+1]; // t1 = h + sigma1 + ch + K(round) + W(round) var t1l = hl + sigma1l; var t1h = hh + sigma1h + ((t1l >>> 0) < (hl >>> 0) ? 1 : 0); t1l += chl; t1h += chh + ((t1l >>> 0) < (chl >>> 0) ? 1 : 0); t1l += krl; t1h += krh + ((t1l >>> 0) < (krl >>> 0) ? 1 : 0); t1l += wrl; t1h += wrh + ((t1l >>> 0) < (wrl >>> 0) ? 1 : 0); // t2 = sigma0 + maj var t2l = sigma0l + majl; var t2h = sigma0h + majh + ((t2l >>> 0) < (sigma0l >>> 0) ? 1 : 0); // Update working variables hh = gh; hl = gl; gh = fh; gl = fl; fh = eh; fl = el; el = (dl + t1l) | 0; eh = (dh + t1h + ((el >>> 0) < (dl >>> 0) ? 1 : 0)) | 0; dh = ch; dl = cl; ch = bh; cl = bl; bh = ah; bl = al; al = (t1l + t2l) | 0; ah = (t1h + t2h + ((al >>> 0) < (t1l >>> 0) ? 1 : 0)) | 0; } // Intermediate hash h0l = h[1] = (h0l + al) | 0; h[0] = (h0h + ah + ((h0l >>> 0) < (al >>> 0) ? 1 : 0)) | 0; h1l = h[3] = (h1l + bl) | 0; h[2] = (h1h + bh + ((h1l >>> 0) < (bl >>> 0) ? 1 : 0)) | 0; h2l = h[5] = (h2l + cl) | 0; h[4] = (h2h + ch + ((h2l >>> 0) < (cl >>> 0) ? 1 : 0)) | 0; h3l = h[7] = (h3l + dl) | 0; h[6] = (h3h + dh + ((h3l >>> 0) < (dl >>> 0) ? 1 : 0)) | 0; h4l = h[9] = (h4l + el) | 0; h[8] = (h4h + eh + ((h4l >>> 0) < (el >>> 0) ? 1 : 0)) | 0; h5l = h[11] = (h5l + fl) | 0; h[10] = (h5h + fh + ((h5l >>> 0) < (fl >>> 0) ? 1 : 0)) | 0; h6l = h[13] = (h6l + gl) | 0; h[12] = (h6h + gh + ((h6l >>> 0) < (gl >>> 0) ? 1 : 0)) | 0; h7l = h[15] = (h7l + hl) | 0; h[14] = (h7h + hh + ((h7l >>> 0) < (hl >>> 0) ? 1 : 0)) | 0; } }; /** @fileOverview Javascript SHA-1 implementation. * * Based on the implementation in RFC 3174, method 1, and on the SJCL * SHA-256 implementation. * * @author Quinn Slack */ /** * Context for a SHA-1 operation in progress. * @constructor * @class Secure Hash Algorithm, 160 bits. */ sjcl.hash.sha1 = function (hash) { if (hash) { this._h = hash._h.slice(0); this._buffer = hash._buffer.slice(0); this._length = hash._length; } else { this.reset(); } }; /** * Hash a string or an array of words. * @static * @param {bitArray|String} data the data to hash. * @return {bitArray} The hash value, an array of 5 big-endian words. */ sjcl.hash.sha1.hash = function (data) { return (new sjcl.hash.sha1()).update(data).finalize(); }; sjcl.hash.sha1.prototype = { /** * The hash's block size, in bits. * @constant */ blockSize: 512, /** * Reset the hash state. * @return this */ reset:function () { this._h = this._init.slice(0); this._buffer = []; this._length = 0; return this; }, /** * Input several words to the hash. * @param {bitArray|String} data the data to hash. * @return this */ update: function (data) { if (typeof data === "string") { data = sjcl.codec.utf8String.toBits(data); } var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data), ol = this._length, nl = this._length = ol + sjcl.bitArray.bitLength(data); for (i = this.blockSize+ol & -this.blockSize; i <= nl; i+= this.blockSize) { this._block(b.splice(0,16)); } return this; }, /** * Complete hashing and output the hash value. * @return {bitArray} The hash value, an array of 5 big-endian words. TODO */ finalize:function () { var i, b = this._buffer, h = this._h; // Round out and push the buffer b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]); // Round out the buffer to a multiple of 16 words, less the 2 length words. for (i = b.length + 2; i & 15; i++) { b.push(0); } // append the length b.push(Math.floor(this._length / 0x100000000)); b.push(this._length | 0); while (b.length) { this._block(b.splice(0,16)); } this.reset(); return h; }, /** * The SHA-1 initialization vector. * @private */ _init:[0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0], /** * The SHA-1 hash key. * @private */ _key:[0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6], /** * The SHA-1 logical functions f(0), f(1), ..., f(79). * @private */ _f:function(t, b, c, d) { if (t <= 19) { return (b & c) | (~b & d); } else if (t <= 39) { return b ^ c ^ d; } else if (t <= 59) { return (b & c) | (b & d) | (c & d); } else if (t <= 79) { return b ^ c ^ d; } }, /** * Circular left-shift operator. * @private */ _S:function(n, x) { return (x << n) | (x >>> 32-n); }, /** * Perform one cycle of SHA-1. * @param {bitArray} words one block of words. * @private */ _block:function (words) { var t, tmp, a, b, c, d, e, w = words.slice(0), h = this._h, k = this._key; a = h[0]; b = h[1]; c = h[2]; d = h[3]; e = h[4]; for (t=0; t<=79; t++) { if (t >= 16) { w[t] = this._S(1, w[t-3] ^ w[t-8] ^ w[t-14] ^ w[t-16]); } tmp = (this._S(5, a) + this._f(t, b, c, d) + e + w[t] + this._key[Math.floor(t/20)]) | 0; e = d; d = c; c = this._S(30, b); b = a; a = tmp; } h[0] = (h[0]+a) |0; h[1] = (h[1]+b) |0; h[2] = (h[2]+c) |0; h[3] = (h[3]+d) |0; h[4] = (h[4]+e) |0; } }; /** @fileOverview CCM mode implementation. * * Special thanks to Roy Nicholson for pointing out a bug in our * implementation. * * @author Emily Stark * @author Mike Hamburg * @author Dan Boneh */ /** @namespace CTR mode with CBC MAC. */ sjcl.mode.ccm = { /** The name of the mode. * @constant */ name: "ccm", /** Encrypt in CCM mode. * @static * @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes. * @param {bitArray} plaintext The plaintext data. * @param {bitArray} iv The initialization value. * @param {bitArray} [adata=[]] The authenticated data. * @param {Number} [tlen=64] the desired tag length, in bits. * @return {bitArray} The encrypted data, an array of bytes. */ encrypt: function(prf, plaintext, iv, adata, tlen) { var L, i, out = plaintext.slice(0), tag, w=sjcl.bitArray, ivl = w.bitLength(iv) / 8, ol = w.bitLength(out) / 8; tlen = tlen || 64; adata = adata || []; if (ivl < 7) { throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes"); } // compute the length of the length for (L=2; L<4 && ol >>> 8*L; L++) {} if (L < 15 - ivl) { L = 15-ivl; } iv = w.clamp(iv,8*(15-L)); // compute the tag tag = sjcl.mode.ccm._computeTag(prf, plaintext, iv, adata, tlen, L); // encrypt out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L); return w.concat(out.data, out.tag); }, /** Decrypt in CCM mode. * @static * @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes. * @param {bitArray} ciphertext The ciphertext data. * @param {bitArray} iv The initialization value. * @param {bitArray} [[]] adata The authenticated data. * @param {Number} [64] tlen the desired tag length, in bits. * @return {bitArray} The decrypted data. */ decrypt: function(prf, ciphertext, iv, adata, tlen) { tlen = tlen || 64; adata = adata || []; var L, i, w=sjcl.bitArray, ivl = w.bitLength(iv) / 8, ol = w.bitLength(ciphertext), out = w.clamp(ciphertext, ol - tlen), tag = w.bitSlice(ciphertext, ol - tlen), tag2; ol = (ol - tlen) / 8; if (ivl < 7) { throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes"); } // compute the length of the length for (L=2; L<4 && ol >>> 8*L; L++) {} if (L < 15 - ivl) { L = 15-ivl; } iv = w.clamp(iv,8*(15-L)); // decrypt out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L); // check the tag tag2 = sjcl.mode.ccm._computeTag(prf, out.data, iv, adata, tlen, L); if (!w.equal(out.tag, tag2)) { throw new sjcl.exception.corrupt("ccm: tag doesn't match"); } return out.data; }, /* Compute the (unencrypted) authentication tag, according to the CCM specification * @param {Object} prf The pseudorandom function. * @param {bitArray} plaintext The plaintext data. * @param {bitArray} iv The initialization value. * @param {bitArray} adata The authenticated data. * @param {Number} tlen the desired tag length, in bits. * @return {bitArray} The tag, but not yet encrypted. * @private */ _computeTag: function(prf, plaintext, iv, adata, tlen, L) { // compute B[0] var q, mac, field = 0, offset = 24, tmp, i, macData = [], w=sjcl.bitArray, xor = w._xor4; tlen /= 8; // check tag length and message length if (tlen % 2 || tlen < 4 || tlen > 16) { throw new sjcl.exception.invalid("ccm: invalid tag length"); } if (adata.length > 0xFFFFFFFF || plaintext.length > 0xFFFFFFFF) { // I don't want to deal with extracting high words from doubles. throw new sjcl.exception.bug("ccm: can't deal with 4GiB or more data"); } // mac the flags mac = [w.partial(8, (adata.length ? 1<<6 : 0) | (tlen-2) << 2 | L-1)]; // mac the iv and length mac = w.concat(mac, iv); mac[3] |= w.bitLength(plaintext)/8; mac = prf.encrypt(mac); if (adata.length) { // mac the associated data. start with its length... tmp = w.bitLength(adata)/8; if (tmp <= 0xFEFF) { macData = [w.partial(16, tmp)]; } else if (tmp <= 0xFFFFFFFF) { macData = w.concat([w.partial(16,0xFFFE)], [tmp]); } // else ... // mac the data itself macData = w.concat(macData, adata); for (i=0; i bs) { key = Hash.hash(key); } for (i=0; i * This random number generator is a derivative of Ferguson and Schneier's * generator Fortuna. It collects entropy from various events into several * pools, implemented by streaming SHA-256 instances. It differs from * ordinary Fortuna in a few ways, though. *

* *

* Most importantly, it has an entropy estimator. This is present because * there is a strong conflict here between making the generator available * as soon as possible, and making sure that it doesn't "run on empty". * In Fortuna, there is a saved state file, and the system is likely to have * time to warm up. *

* *

* Second, because users are unlikely to stay on the page for very long, * and to speed startup time, the number of pools increases logarithmically: * a new pool is created when the previous one is actually used for a reseed. * This gives the same asymptotic guarantees as Fortuna, but gives more * entropy to early reseeds. *

* *

* The entire mechanism here feels pretty klunky. Furthermore, there are * several improvements that should be made, including support for * dedicated cryptographic functions that may be present in some browsers; * state files in local storage; cookies containing randomness; etc. So * look for improvements in future versions. *

*/ sjcl.prng = function(defaultParanoia) { /* private */ this._pools = [new sjcl.hash.sha256()]; this._poolEntropy = [0]; this._reseedCount = 0; this._robins = {}; this._eventId = 0; this._collectorIds = {}; this._collectorIdNext = 0; this._strength = 0; this._poolStrength = 0; this._nextReseed = 0; this._key = [0,0,0,0,0,0,0,0]; this._counter = [0,0,0,0]; this._cipher = undefined; this._defaultParanoia = defaultParanoia; /* event listener stuff */ this._collectorsStarted = false; this._callbacks = {progress: {}, seeded: {}}; this._callbackI = 0; /* constants */ this._NOT_READY = 0; this._READY = 1; this._REQUIRES_RESEED = 2; this._MAX_WORDS_PER_BURST = 65536; this._PARANOIA_LEVELS = [0,48,64,96,128,192,256,384,512,768,1024]; this._MILLISECONDS_PER_RESEED = 30000; this._BITS_PER_RESEED = 80; } sjcl.prng.prototype = { /** Generate several random words, and return them in an array * @param {Number} nwords The number of words to generate. */ randomWords: function (nwords, paranoia) { var out = [], i, readiness = this.isReady(paranoia), g; if (readiness === this._NOT_READY) { throw new sjcl.exception.notReady("generator isn't seeded"); } else if (readiness & this._REQUIRES_RESEED) { this._reseedFromPools(!(readiness & this._READY)); } for (i=0; i0) { estimatedEntropy++; tmp = tmp >>> 1; } } } this._pools[robin].update([id,this._eventId++,2,estimatedEntropy,t,data.length].concat(data)); } break; case "string": if (estimatedEntropy === undefined) { /* English text has just over 1 bit per character of entropy. * But this might be HTML or something, and have far less * entropy than English... Oh well, let's just say one bit. */ estimatedEntropy = data.length; } this._pools[robin].update([id,this._eventId++,3,estimatedEntropy,t,data.length]); this._pools[robin].update(data); break; default: err=1; } if (err) { throw new sjcl.exception.bug("random: addEntropy only supports number, array of numbers or string"); } /* record the new strength */ this._poolEntropy[robin] += estimatedEntropy; this._poolStrength += estimatedEntropy; /* fire off events */ if (oldReady === this._NOT_READY) { if (this.isReady() !== this._NOT_READY) { this._fireEvent("seeded", Math.max(this._strength, this._poolStrength)); } this._fireEvent("progress", this.getProgress()); } }, /** Is the generator ready? */ isReady: function (paranoia) { var entropyRequired = this._PARANOIA_LEVELS[ (paranoia !== undefined) ? paranoia : this._defaultParanoia ]; if (this._strength && this._strength >= entropyRequired) { return (this._poolEntropy[0] > this._BITS_PER_RESEED && (new Date()).valueOf() > this._nextReseed) ? this._REQUIRES_RESEED | this._READY : this._READY; } else { return (this._poolStrength >= entropyRequired) ? this._REQUIRES_RESEED | this._NOT_READY : this._NOT_READY; } }, /** Get the generator's progress toward readiness, as a fraction */ getProgress: function (paranoia) { var entropyRequired = this._PARANOIA_LEVELS[ paranoia ? paranoia : this._defaultParanoia ]; if (this._strength >= entropyRequired) { return 1.0; } else { return (this._poolStrength > entropyRequired) ? 1.0 : this._poolStrength / entropyRequired; } }, /** start the built-in entropy collectors */ startCollectors: function () { if (this._collectorsStarted) { return; } if (window.addEventListener) { window.addEventListener("load", this._loadTimeCollector, false); window.addEventListener("mousemove", this._mouseCollector, false); } else if (document.attachEvent) { document.attachEvent("onload", this._loadTimeCollector); document.attachEvent("onmousemove", this._mouseCollector); } else { throw new sjcl.exception.bug("can't attach event"); } this._collectorsStarted = true; }, /** stop the built-in entropy collectors */ stopCollectors: function () { if (!this._collectorsStarted) { return; } if (window.removeEventListener) { window.removeEventListener("load", this._loadTimeCollector, false); window.removeEventListener("mousemove", this._mouseCollector, false); } else if (window.detachEvent) { window.detachEvent("onload", this._loadTimeCollector); window.detachEvent("onmousemove", this._mouseCollector); } this._collectorsStarted = false; }, /* use a cookie to store entropy. useCookie: function (all_cookies) { throw new sjcl.exception.bug("random: useCookie is unimplemented"); },*/ /** add an event listener for progress or seeded-ness. */ addEventListener: function (name, callback) { this._callbacks[name][this._callbackI++] = callback; }, /** remove an event listener for progress or seeded-ness */ removeEventListener: function (name, cb) { var i, j, cbs=this._callbacks[name], jsTemp=[]; /* I'm not sure if this is necessary; in C++, iterating over a * collection and modifying it at the same time is a no-no. */ for (j in cbs) { if (cbs.hasOwnProperty(j) && cbs[j] === cb) { jsTemp.push(j); } } for (i=0; i= 1 << this._pools.length) { this._pools.push(new sjcl.hash.sha256()); this._poolEntropy.push(0); } /* how strong was this reseed? */ this._poolStrength -= strength; if (strength > this._strength) { this._strength = strength; } this._reseedCount ++; this._reseed(reseedData); }, _mouseCollector: function (ev) { var x = ev.x || ev.clientX || ev.offsetX || 0, y = ev.y || ev.clientY || ev.offsetY || 0; sjcl.random.addEntropy([x,y], 2, "mouse"); }, _loadTimeCollector: function (ev) { sjcl.random.addEntropy((new Date()).valueOf(), 2, "loadtime"); }, _fireEvent: function (name, arg) { var j, cbs=sjcl.random._callbacks[name], cbsTemp=[]; /* TODO: there is a race condition between removing collectors and firing them */ /* I'm not sure if this is necessary; in C++, iterating over a * collection and modifying it at the same time is a no-no. */ for (j in cbs) { if (cbs.hasOwnProperty(j)) { cbsTemp.push(cbs[j]); } } for (j=0; j 4)) { throw new sjcl.exception.invalid("json encrypt: invalid parameters"); } if (typeof password === "string") { tmp = sjcl.misc.cachedPbkdf2(password, p); password = tmp.key.slice(0,p.ks/32); p.salt = tmp.salt; } else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.publicKey) { tmp = password.kem(); p.kemtag = tmp.tag; password = tmp.key.slice(0,p.ks/32); } if (typeof plaintext === "string") { plaintext = sjcl.codec.utf8String.toBits(plaintext); } if (typeof adata === "string") { adata = sjcl.codec.utf8String.toBits(adata); } prp = new sjcl.cipher[p.cipher](password); /* return the json data */ j._add(rp, p); rp.key = password; /* do the encryption */ p.ct = sjcl.mode[p.mode].encrypt(prp, plaintext, p.iv, adata, p.ts); //return j.encode(j._subtract(p, j.defaults)); return j.encode(p); }, /** Simple decryption function. * @param {String|bitArray} password The password or key. * @param {String} ciphertext The ciphertext to decrypt. * @param {Object} [params] Additional non-default parameters. * @param {Object} [rp] A returned object with filled parameters. * @return {String} The plaintext. * @throws {sjcl.exception.invalid} if a parameter is invalid. * @throws {sjcl.exception.corrupt} if the ciphertext is corrupt. */ decrypt: function (password, ciphertext, params, rp) { params = params || {}; rp = rp || {}; var j = sjcl.json, p = j._add(j._add(j._add({},j.defaults),j.decode(ciphertext)), params, true), ct, tmp, prp, adata=p.adata; if (typeof p.salt === "string") { p.salt = sjcl.codec.base64.toBits(p.salt); } if (typeof p.iv === "string") { p.iv = sjcl.codec.base64.toBits(p.iv); } if (!sjcl.mode[p.mode] || !sjcl.cipher[p.cipher] || (typeof password === "string" && p.iter <= 100) || (p.ts !== 64 && p.ts !== 96 && p.ts !== 128) || (p.ks !== 128 && p.ks !== 192 && p.ks !== 256) || (!p.iv) || (p.iv.length < 2 || p.iv.length > 4)) { throw new sjcl.exception.invalid("json decrypt: invalid parameters"); } if (typeof password === "string") { tmp = sjcl.misc.cachedPbkdf2(password, p); password = tmp.key.slice(0,p.ks/32); p.salt = tmp.salt; } else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.secretKey) { password = password.unkem(sjcl.codec.base64.toBits(p.kemtag)).slice(0,p.ks/32); } if (typeof adata === "string") { adata = sjcl.codec.utf8String.toBits(adata); } prp = new sjcl.cipher[p.cipher](password); /* do the decryption */ ct = sjcl.mode[p.mode].decrypt(prp, p.ct, p.iv, adata, p.ts); /* return the json data */ j._add(rp, p); rp.key = password; return sjcl.codec.utf8String.fromBits(ct); }, /** Encode a flat structure into a JSON string. * @param {Object} obj The structure to encode. * @return {String} A JSON string. * @throws {sjcl.exception.invalid} if obj has a non-alphanumeric property. * @throws {sjcl.exception.bug} if a parameter has an unsupported type. */ encode: function (obj) { var i, out='{', comma=''; for (i in obj) { if (obj.hasOwnProperty(i)) { if (!i.match(/^[a-z0-9]+$/i)) { throw new sjcl.exception.invalid("json encode: invalid property name"); } out += comma + '"' + i + '":'; comma = ','; switch (typeof obj[i]) { case 'number': case 'boolean': out += obj[i]; break; case 'string': out += '"' + escape(obj[i]) + '"'; break; case 'object': out += '"' + sjcl.codec.base64.fromBits(obj[i],0) + '"'; break; default: throw new sjcl.exception.bug("json encode: unsupported type"); } } } return out+'}'; }, /** Decode a simple (flat) JSON string into a structure. The ciphertext, * adata, salt and iv will be base64-decoded. * @param {String} str The string. * @return {Object} The decoded structure. * @throws {sjcl.exception.invalid} if str isn't (simple) JSON. */ decode: function (str) { str = str.replace(/\s/g,''); if (!str.match(/^\{.*\}$/)) { throw new sjcl.exception.invalid("json decode: this isn't json!"); } var a = str.replace(/^\{|\}$/g, '').split(/,/), out={}, i, m; for (i=0; i= this.limbs.length) ? 0 : this.limbs[i]; }, /** * Constant time comparison function. * Returns 1 if this >= that, or zero otherwise. */ greaterEquals: function(that) { if (typeof that === "number") { that = new this._class(that); } var less = 0, greater = 0, i, a, b; i = Math.max(this.limbs.length, that.limbs.length) - 1; for (; i>= 0; i--) { a = this.getLimb(i); b = that.getLimb(i); greater |= (b - a) & ~less; less |= (a - b) & ~greater; } return (greater | ~less) >>> 31; }, /** * Convert to a hex string. */ toString: function() { this.fullReduce(); var out="", i, s, l = this.limbs; for (i=0; i < this.limbs.length; i++) { s = l[i].toString(16); while (i < this.limbs.length - 1 && s.length < 6) { s = "0" + s; } out = s + out; } return "0x"+out; }, /** this += that. Does not normalize. */ addM: function(that) { if (typeof(that) !== "object") { that = new this._class(that); } var i, l=this.limbs, ll=that.limbs; for (i=l.length; i> r; } if (carry) { l.push(carry); } return this; }, /** this /= 2, rounded down. Requires normalized; ends up normalized. */ halveM: function() { var i, carry=0, tmp, r=this.radix, l=this.limbs; for (i=l.length-1; i>=0; i--) { tmp = l[i]; l[i] = (tmp+carry)>>1; carry = (tmp&1) << r; } if (!l[l.length-1]) { l.pop(); } return this; }, /** this -= that. Does not normalize. */ subM: function(that) { if (typeof(that) !== "object") { that = new this._class(that); } var i, l=this.limbs, ll=that.limbs; for (i=l.length; i 0; ci--) { that.halveM(); if (out.greaterEquals(that)) { out.subM(that).normalize(); } } return out.trim(); }, /** return inverse mod prime p. p must be odd. Binary extended Euclidean algorithm mod p. */ inverseMod: function(p) { var a = new sjcl.bn(1), b = new sjcl.bn(0), x = new sjcl.bn(this), y = new sjcl.bn(p), tmp, i, nz=1; if (!(p.limbs[0] & 1)) { throw (new sjcl.exception.invalid("inverseMod: p must be odd")); } // invariant: y is odd do { if (x.limbs[0] & 1) { if (!x.greaterEquals(y)) { // x < y; swap everything tmp = x; x = y; y = tmp; tmp = a; a = b; b = tmp; } x.subM(y); x.normalize(); if (!a.greaterEquals(b)) { a.addM(p); } a.subM(b); } // cut everything in half x.halveM(); if (a.limbs[0] & 1) { a.addM(p); } a.normalize(); a.halveM(); // check for termination: x ?= 0 for (i=nz=0; i= 0; i--) { out = w.concat(out, [w.partial(Math.min(this.radix,len), this.getLimb(i))]); len -= this.radix; } return out; }, /** Return the length in bits, rounded up to the nearest byte. */ bitLength: function() { this.fullReduce(); var out = this.radix * (this.limbs.length - 1), b = this.limbs[this.limbs.length - 1]; for (; b; b >>>= 1) { out ++; } return out+7 & -8; } }; /** @this { sjcl.bn } */ sjcl.bn.fromBits = function(bits) { var Class = this, out = new Class(), words=[], w=sjcl.bitArray, t = this.prototype, l = Math.min(this.bitLength || 0x100000000, w.bitLength(bits)), e = l % t.radix || t.radix; words[0] = w.extract(bits, 0, e); for (; e < l; e += t.radix) { words.unshift(w.extract(bits, e, t.radix)); } out.limbs = words; return out; }; sjcl.bn.prototype.ipv = 1 / (sjcl.bn.prototype.placeVal = Math.pow(2,sjcl.bn.prototype.radix)); sjcl.bn.prototype.radixMask = (1 << sjcl.bn.prototype.radix) - 1; /** * Creates a new subclass of bn, based on reduction modulo a pseudo-Mersenne prime, * i.e. a prime of the form 2^e + sum(a * 2^b),where the sum is negative and sparse. */ sjcl.bn.pseudoMersennePrime = function(exponent, coeff) { /** @constructor */ function p(it) { this.initWith(it); /*if (this.limbs[this.modOffset]) { this.reduce(); }*/ } var ppr = p.prototype = new sjcl.bn(), i, tmp, mo; mo = ppr.modOffset = Math.ceil(tmp = exponent / ppr.radix); ppr.exponent = exponent; ppr.offset = []; ppr.factor = []; ppr.minOffset = mo; ppr.fullMask = 0; ppr.fullOffset = []; ppr.fullFactor = []; ppr.modulus = p.modulus = new sjcl.bn(Math.pow(2,exponent)); ppr.fullMask = 0|-Math.pow(2, exponent % ppr.radix); for (i=0; i mo) { l = limbs.pop(); ll = limbs.length; for (k=0; k=0; i--) { for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) { out = out.doubl().doubl().doubl().doubl().add(multiples[k[i]>>j & 0xF]); } } return out; }, /** * Multiply this point by k, added to affine2*k2, and return the answer in Jacobian coordinates. * @param {bigInt} k The coefficient to multiply this by. * @param {sjcl.ecc.point} affine This point in affine coordinates. * @param {bigInt} k2 The coefficient to multiply affine2 this by. * @param {sjcl.ecc.point} affine The other point in affine coordinates. * @return {sjcl.ecc.pointJac} The result of the multiplication and addition, in Jacobian coordinates. */ mult2: function(k1, affine, k2, affine2) { if (typeof(k1) === "number") { k1 = [k1]; } else if (k1.limbs !== undefined) { k1 = k1.normalize().limbs; } if (typeof(k2) === "number") { k2 = [k2]; } else if (k2.limbs !== undefined) { k2 = k2.normalize().limbs; } var i, j, out = new sjcl.ecc.point(this.curve).toJac(), m1 = affine.multiples(), m2 = affine2.multiples(), l1, l2; for (i=Math.max(k1.length,k2.length)-1; i>=0; i--) { l1 = k1[i] | 0; l2 = k2[i] | 0; for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) { out = out.doubl().doubl().doubl().doubl().add(m1[l1>>j & 0xF]).add(m2[l2>>j & 0xF]); } } return out; }, isValid: function() { var z2 = this.z.square(), z4 = z2.square(), z6 = z4.mul(z2); return this.y.square().equals( this.curve.b.mul(z6).add(this.x.mul( this.curve.a.mul(z4).add(this.x.square())))); } }; /** * Construct an elliptic curve. Most users will not use this and instead start with one of the NIST curves defined below. * * @constructor * @param {bigInt} p The prime modulus. * @param {bigInt} r The prime order of the curve. * @param {bigInt} a The constant a in the equation of the curve y^2 = x^3 + ax + b (for NIST curves, a is always -3). * @param {bigInt} x The x coordinate of a base point of the curve. * @param {bigInt} y The y coordinate of a base point of the curve. */ sjcl.ecc.curve = function(Field, r, a, b, x, y) { this.field = Field; this.r = Field.prototype.modulus.sub(r); this.a = new Field(a); this.b = new Field(b); this.G = new sjcl.ecc.point(this, new Field(x), new Field(y)); }; sjcl.ecc.curve.prototype.fromBits = function (bits) { var w = sjcl.bitArray, l = this.field.prototype.exponent + 7 & -8, p = new sjcl.ecc.point(this, this.field.fromBits(w.bitSlice(bits, 0, l)), this.field.fromBits(w.bitSlice(bits, l, 2*l))); if (!p.isValid()) { throw new sjcl.exception.corrupt("not on the curve!"); } return p; }; sjcl.ecc.curves = { c192: new sjcl.ecc.curve( sjcl.bn.prime.p192, "0x662107c8eb94364e4b2dd7ce", -3, "0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1", "0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012", "0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811"), c224: new sjcl.ecc.curve( sjcl.bn.prime.p224, "0xe95c1f470fc1ec22d6baa3a3d5c4", -3, "0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", "0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", "0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"), c256: new sjcl.ecc.curve( sjcl.bn.prime.p256, "0x4319055358e8617b0c46353d039cdaae", -3, "0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", "0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", "0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"), c384: new sjcl.ecc.curve( sjcl.bn.prime.p384, "0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c", -3, "0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", "0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", "0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f") }; /* Diffie-Hellman-like public-key system */ sjcl.ecc._dh = function(cn) { sjcl.ecc[cn] = { /** @constructor */ publicKey: function(curve, point) { this._curve = curve; this._curveBitLength = curve.r.bitLength(); if (point instanceof Array) { this._point = curve.fromBits(point); } else { this._point = point; } this.get = function() { var pointbits = this._point.toBits(); var len = sjcl.bitArray.bitLength(pointbits); var x = sjcl.bitArray.bitSlice(pointbits, 0, len/2); var y = sjcl.bitArray.bitSlice(pointbits, len/2); return { x: x, y: y }; } }, /** @constructor */ secretKey: function(curve, exponent) { this._curve = curve; this._curveBitLength = curve.r.bitLength(); this._exponent = exponent; this.get = function() { return this._exponent.toBits(); } }, /** @constructor */ generateKeys: function(curve, paranoia, sec) { if (curve === undefined) { curve = 256; } if (typeof curve === "number") { curve = sjcl.ecc.curves['c'+curve]; if (curve === undefined) { throw new sjcl.exception.invalid("no such curve"); } } if (sec === undefined) { var sec = sjcl.bn.random(curve.r, paranoia); } var pub = curve.G.mult(sec); return { pub: new sjcl.ecc[cn].publicKey(curve, pub), sec: new sjcl.ecc[cn].secretKey(curve, sec) }; } }; }; sjcl.ecc._dh("elGamal"); sjcl.ecc.elGamal.publicKey.prototype = { kem: function(paranoia) { var sec = sjcl.bn.random(this._curve.r, paranoia), tag = this._curve.G.mult(sec).toBits(), key = sjcl.hash.sha256.hash(this._point.mult(sec).toBits()); return { key: key, tag: tag }; } }; sjcl.ecc.elGamal.secretKey.prototype = { unkem: function(tag) { return sjcl.hash.sha256.hash(this._curve.fromBits(tag).mult(this._exponent).toBits()); }, dh: function(pk) { return sjcl.hash.sha256.hash(pk._point.mult(this._exponent).toBits()); } }; sjcl.ecc._dh("ecdsa"); sjcl.ecc.ecdsa.secretKey.prototype = { sign: function(hash, paranoia, fakeLegacyVersion, fixedKForTesting) { if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) { hash = sjcl.bitArray.clamp(hash, this._curveBitLength); } var R = this._curve.r, l = R.bitLength(), k = fixedKForTesting || sjcl.bn.random(R.sub(1), paranoia).add(1), r = this._curve.G.mult(k).x.mod(R), ss = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)), s = fakeLegacyVersion ? ss.inverseMod(R).mul(k).mod(R) : ss.mul(k.inverseMod(R)).mod(R); return sjcl.bitArray.concat(r.toBits(l), s.toBits(l)); } }; sjcl.ecc.ecdsa.publicKey.prototype = { verify: function(hash, rs, fakeLegacyVersion) { if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) { hash = sjcl.bitArray.clamp(hash, this._curveBitLength); } var w = sjcl.bitArray, R = this._curve.r, l = this._curveBitLength, r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)), ss = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)), s = fakeLegacyVersion ? ss : ss.inverseMod(R), hG = sjcl.bn.fromBits(hash).mul(s).mod(R), hA = r.mul(s).mod(R), r2 = this._curve.G.mult2(hG, hA, this._point).x; if (r.equals(0) || ss.equals(0) || r.greaterEquals(R) || ss.greaterEquals(R) || !r2.equals(r)) { if (fakeLegacyVersion === undefined) { return this.verify(hash, rs, true); } else { throw (new sjcl.exception.corrupt("signature didn't check out")); } } return true; } }; /** @fileOverview Javascript SRP implementation. * * This file contains a partial implementation of the SRP (Secure Remote * Password) password-authenticated key exchange protocol. Given a user * identity, salt, and SRP group, it generates the SRP verifier that may * be sent to a remote server to establish and SRP account. * * For more information, see http://srp.stanford.edu/. * * @author Quinn Slack */ /** * Compute the SRP verifier from the username, password, salt, and group. * @class SRP */ sjcl.keyexchange.srp = { /** * Calculates SRP v, the verifier. * v = g^x mod N [RFC 5054] * @param {String} I The username. * @param {String} P The password. * @param {Object} s A bitArray of the salt. * @param {Object} group The SRP group. Use sjcl.keyexchange.srp.knownGroup to obtain this object. * @return {Object} A bitArray of SRP v. */ makeVerifier: function(I, P, s, group) { var x; x = sjcl.keyexchange.srp.makeX(I, P, s); x = sjcl.bn.fromBits(x); return group.g.powermod(x, group.N); }, /** * Calculates SRP x. * x = SHA1( | SHA( | ":" | )) [RFC 2945] * @param {String} I The username. * @param {String} P The password. * @param {Object} s A bitArray of the salt. * @return {Object} A bitArray of SRP x. */ makeX: function(I, P, s) { var inner = sjcl.hash.sha1.hash(I + ':' + P); return sjcl.hash.sha1.hash(sjcl.bitArray.concat(s, inner)); }, /** * Returns the known SRP group with the given size (in bits). * @param {String} i The size of the known SRP group. * @return {Object} An object with "N" and "g" properties. */ knownGroup:function(i) { if (typeof i !== "string") { i = i.toString(); } if (!sjcl.keyexchange.srp._didInitKnownGroups) { sjcl.keyexchange.srp._initKnownGroups(); } return sjcl.keyexchange.srp._knownGroups[i]; }, /** * Initializes bignum objects for known group parameters. * @private */ _didInitKnownGroups: false, _initKnownGroups:function() { var i, size, group; for (i=0; i < sjcl.keyexchange.srp._knownGroupSizes.length; i++) { size = sjcl.keyexchange.srp._knownGroupSizes[i].toString(); group = sjcl.keyexchange.srp._knownGroups[size]; group.N = new sjcl.bn(group.N); group.g = new sjcl.bn(group.g); } sjcl.keyexchange.srp._didInitKnownGroups = true; }, _knownGroupSizes: [1024, 1536, 2048], _knownGroups: { 1024: { N: "EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C" + "9C256576D674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE4" + "8E495C1D6089DAD15DC7D7B46154D6B6CE8EF4AD69B15D4982559B29" + "7BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976EAA9A" + "FD5138FE8376435B9FC61D2FC0EB06E3", g:2 }, 1536: { N: "9DEF3CAFB939277AB1F12A8617A47BBBDBA51DF499AC4C80BEEEA961" + "4B19CC4D5F4F5F556E27CBDE51C6A94BE4607A291558903BA0D0F843" + "80B655BB9A22E8DCDF028A7CEC67F0D08134B1C8B97989149B609E0B" + "E3BAB63D47548381DBC5B1FC764E3F4B53DD9DA1158BFD3E2B9C8CF5" + "6EDF019539349627DB2FD53D24B7C48665772E437D6C7F8CE442734A" + "F7CCB7AE837C264AE3A9BEB87F8A2FE9B8B5292E5A021FFF5E91479E" + "8CE7A28C2442C6F315180F93499A234DCF76E3FED135F9BB", g: 2 }, 2048: { N: "AC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC319294" + "3DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310D" + "CD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FB" + "D5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF74" + "7359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A" + "436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D" + "5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E73" + "03CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB6" + "94B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F" + "9E4AFF73", g: 2 } } }; /** * Check that the point is valid based on the method described in * SEC 1: Elliptic Curve Cryptography, section 3.2.2.1: * Elliptic Curve Public Key Validation Primitive * http://www.secg.org/download/aid-780/sec1-v2.pdf * * @returns {Boolean} */ sjcl.ecc.point.prototype.isValidPoint = function() { var self = this; var field_modulus = self.curve.field.modulus; if (self.isIdentity) { return false; } // Check that coordinatres are in bounds // Return false if x < 1 or x > (field_modulus - 1) if (((new sjcl.bn(1).greaterEquals(self.x)) && !self.x.equals(1)) || (self.x.greaterEquals(field_modulus.sub(1))) && !self.x.equals(1)) { return false; } // Return false if y < 1 or y > (field_modulus - 1) if (((new sjcl.bn(1).greaterEquals(self.y)) && !self.y.equals(1)) || (self.y.greaterEquals(field_modulus.sub(1))) && !self.y.equals(1)) { return false; } if (!self.isOnCurve()) { return false; } // TODO check to make sure point is a scalar multiple of base_point return true; }; /** * Check that the point is on the curve * * @returns {Boolean} */ sjcl.ecc.point.prototype.isOnCurve = function() { var self = this; var field_order = self.curve.r; var component_a = self.curve.a; var component_b = self.curve.b; var field_modulus = self.curve.field.modulus; var left_hand_side = self.y.mul(self.y).mod(field_modulus); var right_hand_side = self.x.mul(self.x).mul(self.x).add(component_a.mul(self.x)).add(component_b).mod(field_modulus); return left_hand_side.equals(right_hand_side); }; sjcl.ecc.point.prototype.toString = function() { return '(' + this.x.toString() + ', ' + this.y.toString() + ')'; }; sjcl.ecc.pointJac.prototype.toString = function() { return '(' + this.x.toString() + ', ' + this.y.toString() + ', ' + this.z.toString() + ')'; }; // ----- for secp256k1 ------ // Overwrite NIST-P256 with secp256k1 sjcl.ecc.curves.c256 = new sjcl.ecc.curve( sjcl.bn.pseudoMersennePrime(256, [[0,-1],[4,-1],[6,-1],[7,-1],[8,-1],[9,-1],[32,-1]]), "0x14551231950b75fc4402da1722fc9baee", 0, 7, "0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798", "0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8" ); // Replace point addition and doubling algorithms // NIST-P256 is a=-3, we need algorithms for a=0 sjcl.ecc.pointJac.prototype.add = function(T) { var S = this; if (S.curve !== T.curve) { throw("sjcl.ecc.add(): Points must be on the same curve to add them!"); } if (S.isIdentity) { return T.toJac(); } else if (T.isIdentity) { return S; } var z1z1 = S.z.square(); var h = T.x.mul(z1z1).subM(S.x); var s2 = T.y.mul(S.z).mul(z1z1); if (h.equals(0)) { if (S.y.equals(T.y.mul(z1z1.mul(S.z)))) { // same point return S.doubl(); } else { // inverses return new sjcl.ecc.pointJac(S.curve); } } var hh = h.square(); var i = hh.copy().doubleM().doubleM(); var j = h.mul(i); var r = s2.sub(S.y).doubleM(); var v = S.x.mul(i); var x = r.square().subM(j).subM(v.copy().doubleM()); var y = r.mul(v.sub(x)).subM(S.y.mul(j).doubleM()); var z = S.z.add(h).square().subM(z1z1).subM(hh); return new sjcl.ecc.pointJac(this.curve,x,y,z); }; sjcl.ecc.pointJac.prototype.doubl = function () { if (this.isIdentity) { return this; } var a = this.x.square(); var b = this.y.square(); var c = b.square(); var d = this.x.add(b).square().subM(a).subM(c).doubleM(); var e = a.mul(3); var f = e.square(); var x = f.sub(d.copy().doubleM()); var y = e.mul(d.sub(x)).subM(c.doubleM().doubleM().doubleM()); var z = this.z.mul(this.y).doubleM(); return new sjcl.ecc.pointJac(this.curve, x, y, z); }; sjcl.ecc.point.prototype.toBytesCompressed = function () { var header = this.y.mod(2).toString() == "0x0" ? 0x02 : 0x03; return [header].concat(sjcl.codec.bytes.fromBits(this.x.toBits())) }; /** @fileOverview Javascript RIPEMD-160 implementation. * * @author Artem S Vybornov */ (function() { /** * Context for a RIPEMD-160 operation in progress. * @constructor * @class RIPEMD, 160 bits. */ sjcl.hash.ripemd160 = function (hash) { if (hash) { this._h = hash._h.slice(0); this._buffer = hash._buffer.slice(0); this._length = hash._length; } else { this.reset(); } }; /** * Hash a string or an array of words. * @static * @param {bitArray|String} data the data to hash. * @return {bitArray} The hash value, an array of 5 big-endian words. */ sjcl.hash.ripemd160.hash = function (data) { return (new sjcl.hash.ripemd160()).update(data).finalize(); }; sjcl.hash.ripemd160.prototype = { /** * Reset the hash state. * @return this */ reset: function () { this._h = _h0.slice(0); this._buffer = []; this._length = 0; return this; }, /** * Reset the hash state. * @param {bitArray|String} data the data to hash. * @return this */ update: function (data) { if ( typeof data === "string" ) data = sjcl.codec.utf8String.toBits(data); var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data), ol = this._length, nl = this._length = ol + sjcl.bitArray.bitLength(data); for (i = 512+ol & -512; i <= nl; i+= 512) { var words = b.splice(0,16); for ( var w = 0; w < 16; ++w ) words[w] = _cvt(words[w]); _block.call( this, words ); } return this; }, /** * Complete hashing and output the hash value. * @return {bitArray} The hash value, an array of 5 big-endian words. */ finalize: function () { var b = sjcl.bitArray.concat( this._buffer, [ sjcl.bitArray.partial(1,1) ] ), l = ( this._length + 1 ) % 512, z = ( l > 448 ? 512 : 448 ) - l % 448, zp = z % 32; if ( zp > 0 ) b = sjcl.bitArray.concat( b, [ sjcl.bitArray.partial(zp,0) ] ) for ( ; z >= 32; z -= 32 ) b.push(0); b.push( _cvt( this._length | 0 ) ); b.push( _cvt( Math.floor(this._length / 0x100000000) ) ); while ( b.length ) { var words = b.splice(0,16); for ( var w = 0; w < 16; ++w ) words[w] = _cvt(words[w]); _block.call( this, words ); } var h = this._h; this.reset(); for ( var w = 0; w < 5; ++w ) h[w] = _cvt(h[w]); return h; } }; var _h0 = [ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ]; var _k1 = [ 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e ]; var _k2 = [ 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000 ]; for ( var i = 4; i >= 0; --i ) { for ( var j = 1; j < 16; ++j ) { _k1.splice(i,0,_k1[i]); _k2.splice(i,0,_k2[i]); } } var _r1 = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 ]; var _r2 = [ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 ]; var _s1 = [ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ]; var _s2 = [ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ]; function _f0(x,y,z) { return x ^ y ^ z; }; function _f1(x,y,z) { return (x & y) | (~x & z); }; function _f2(x,y,z) { return (x | ~y) ^ z; }; function _f3(x,y,z) { return (x & z) | (y & ~z); }; function _f4(x,y,z) { return x ^ (y | ~z); }; function _rol(n,l) { return (n << l) | (n >>> (32-l)); } function _cvt(n) { return ( (n & 0xff << 0) << 24 ) | ( (n & 0xff << 8) << 8 ) | ( (n & 0xff << 16) >>> 8 ) | ( (n & 0xff << 24) >>> 24 ); } function _block(X) { var A1 = this._h[0], B1 = this._h[1], C1 = this._h[2], D1 = this._h[3], E1 = this._h[4], A2 = this._h[0], B2 = this._h[1], C2 = this._h[2], D2 = this._h[3], E2 = this._h[4]; var j = 0, T; for ( ; j < 16; ++j ) { T = _rol( A1 + _f0(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1; A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T; T = _rol( A2 + _f4(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2; A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; } for ( ; j < 32; ++j ) { T = _rol( A1 + _f1(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1; A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T; T = _rol( A2 + _f3(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2; A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; } for ( ; j < 48; ++j ) { T = _rol( A1 + _f2(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1; A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T; T = _rol( A2 + _f2(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2; A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; } for ( ; j < 64; ++j ) { T = _rol( A1 + _f3(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1; A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T; T = _rol( A2 + _f1(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2; A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; } for ( ; j < 80; ++j ) { T = _rol( A1 + _f4(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1; A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T; T = _rol( A2 + _f0(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2; A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; } T = this._h[1] + C1 + D2; this._h[1] = this._h[2] + D1 + E2; this._h[2] = this._h[3] + E1 + A2; this._h[3] = this._h[4] + A1 + B2; this._h[4] = this._h[0] + B1 + C2; this._h[0] = T; } })(); sjcl.bn.ZERO = new sjcl.bn(0); /** [ this / that , this % that ] */ sjcl.bn.prototype.divRem = function (that) { if (typeof(that) !== "object") { that = new this._class(that); } var thisa = this.abs(), thata = that.abs(), quot = new this._class(0), ci = 0; if (!thisa.greaterEquals(thata)) { return [new sjcl.bn(0), this.copy()]; } else if (thisa.equals(thata)) { return [new sjcl.bn(1), new sjcl.bn(0)]; } for (; thisa.greaterEquals(thata); ci++) { thata.doubleM(); } for (; ci > 0; ci--) { quot.doubleM(); thata.halveM(); if (thisa.greaterEquals(thata)) { quot.addM(1); thisa.subM(that).normalize(); } } return [quot, thisa]; }; /** this /= that (rounded to nearest int) */ sjcl.bn.prototype.divRound = function (that) { var dr = this.divRem(that), quot = dr[0], rem = dr[1]; if (rem.doubleM().greaterEquals(that)) { quot.addM(1); } return quot; }; /** this /= that (rounded down) */ sjcl.bn.prototype.div = function (that) { var dr = this.divRem(that); return dr[0]; }; sjcl.bn.prototype.sign = function () { return this.greaterEquals(sjcl.bn.ZERO) ? 1 : -1; }; /** -this */ sjcl.bn.prototype.neg = function () { return sjcl.bn.ZERO.sub(this); }; /** |this| */ sjcl.bn.prototype.abs = function () { if (this.sign() === -1) { return this.neg(); } else return this; }; /** this >> that */ sjcl.bn.prototype.shiftRight = function (that) { if ("number" !== typeof that) { throw new Error("shiftRight expects a number"); } that = +that; if (that < 0) { return this.shiftLeft(that); } var a = new sjcl.bn(this); while (that >= this.radix) { a.limbs.shift(); that -= this.radix; } while (that--) { a.halveM(); } return a; }; /** this >> that */ sjcl.bn.prototype.shiftLeft = function (that) { if ("number" !== typeof that) { throw new Error("shiftLeft expects a number"); } that = +that; if (that < 0) { return this.shiftRight(that); } var a = new sjcl.bn(this); while (that >= this.radix) { a.limbs.unshift(0); that -= this.radix; } while (that--) { a.doubleM(); } return a; }; /** (int)this */ // NOTE Truncates to 32-bit integer sjcl.bn.prototype.toNumber = function () { return this.limbs[0] | 0; }; /** find n-th bit, 0 = LSB */ sjcl.bn.prototype.testBit = function (bitIndex) { var limbIndex = Math.floor(bitIndex / this.radix); var bitIndexInLimb = bitIndex % this.radix; if (limbIndex >= this.limbs.length) return 0; return (this.limbs[limbIndex] >>> bitIndexInLimb) & 1; }; /** set n-th bit, 0 = LSB */ sjcl.bn.prototype.setBitM = function (bitIndex) { var limbIndex = Math.floor(bitIndex / this.radix); var bitIndexInLimb = bitIndex % this.radix; while (limbIndex >= this.limbs.length) this.limbs.push(0); this.limbs[limbIndex] |= 1 << bitIndexInLimb; this.cnormalize(); return this; }; sjcl.bn.prototype.modInt = function (n) { return this.toNumber() % n; }; sjcl.bn.prototype.invDigit = function () { var radixMod = 1 + this.radixMask; if (this.limbs.length < 1) return 0; var x = this.limbs[0]; if ((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < radixMod <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%radixMod))%radixMod; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?radixMod-y:-y; }; // returns bit length of the integer x function nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r; } // JSBN-style add and multiply for SJCL w/ 24 bit radix sjcl.bn.prototype.am = function (i,x,w,j,c,n) { var xl = x&0xfff, xh = x>>12; while (--n >= 0) { var l = this.limbs[i]&0xfff; var h = this.limbs[i++]>>12; var m = xh*l+h*xl; l = xl*l+((m&0xfff)<<12)+w.limbs[j]+c; c = (l>>24)+(m>>12)+xh*h; w.limbs[j++] = l&0xffffff; } return c; } var Montgomery = function (m) { this.m = m; this.mt = m.limbs.length; this.mt2 = this.mt * 2; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.radix-15))-1; }; Montgomery.prototype.reduce = function (x) { var radixMod = x.radixMask + 1; while (x.limbs.length <= this.mt2) // pad x so am has enough room later x.limbs[x.limbs.length] = 0; for (var i = 0; i < this.mt; ++i) { // faster way of calculating u0 = x[i]*mp mod 2^radix var j = x.limbs[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x.limbs[i]>>15)*this.mpl)&this.um)<<15))&x.radixMask; // use am to combine the multiply-shift-add into one call j = i+this.mt; x.limbs[j] += this.m.am(0,u0,x,i,0,this.mt); // propagate carry while (x.limbs[j] >= radixMod) { x.limbs[j] -= radixMod; x.limbs[++j]++; } } x.trim(); x = x.shiftRight(this.mt * this.m.radix); if (x.greaterEquals(this.m)) x = x.sub(this.m); return x.trim().normalize().reduce(); }; Montgomery.prototype.square = function (x) { return this.reduce(x.square()); }; Montgomery.prototype.multiply = function (x, y) { return this.reduce(x.mul(y)); }; Montgomery.prototype.convert = function (x) { return x.abs().shiftLeft(this.mt * this.m.radix).mod(this.m); }; Montgomery.prototype.revert = function (x) { return this.reduce(x.copy()); }; sjcl.bn.prototype.powermodMontgomery = function (e, m) { var i = e.bitLength(), k, r = new this._class(1); if (i <= 0) return r; else if (i < 18) k = 1; else if (i < 48) k = 3; else if (i < 144) k = 4; else if (i < 768) k = 5; else k = 6; if (i < 8 || !m.testBit(0)) { // For small exponents and even moduli, use a simple square-and-multiply // algorithm. return this.powermod(e, m); } var z = new Montgomery(m); e.trim().normalize(); // precomputation var g = new Array(), n = 3, k1 = k-1, km = (1< 1) { var g2 = z.square(g[1]); while (n <= km) { g[n] = z.multiply(g2, g[n-2]); n += 2; } } var j = e.limbs.length-1, w, is1 = true, r2 = new this._class(), t; i = nbits(e.limbs[j])-1; while (j >= 0) { if (i >= k1) w = (e.limbs[j]>>(i-k1))&km; else { w = (e.limbs[j]&((1<<(i+1))-1))<<(k1-i); if (j > 0) w |= e.limbs[j-1]>>(this.radix+i-k1); } n = k; while ((w&1) == 0) { w >>= 1; --n; } if ((i -= n) < 0) { i += this.radix; --j; } if (is1) { // ret == 1, don't bother squaring or multiplying it r = g[w].copy(); is1 = false; } else { while (n > 1) { r2 = z.square(r); r = z.square(r2); n -= 2; } if (n > 0) r2 = z.square(r); else { t = r; r = r2; r2 = t; } r = z.multiply(r2,g[w]); } while (j >= 0 && (e.limbs[j]&(1< 0 && typeof k_for_testing[0] === 'number') { k = k_for_testing; } else if (typeof k_for_testing === 'string' && /^[0-9a-fA-F]+$/.test(k_for_testing)) { k = sjcl.bn.fromBits(sjcl.codec.hex.toBits(k_for_testing)); } else { // This is the only option that should be used in production k = sjcl.bn.random(R.sub(1), paranoia).add(1); } var r = this._curve.G.mult(k).x.mod(R); var s = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)).mul(k.inverseMod(R)).mod(R); return sjcl.bitArray.concat(r.toBits(l), s.toBits(l)); }; sjcl.ecc.ecdsa.publicKey.prototype.verify = function(hash, rs) { var w = sjcl.bitArray, R = this._curve.r, l = R.bitLength(), r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)), s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)), sInv = s.inverseMod(R), hG = sjcl.bn.fromBits(hash).mul(sInv).mod(R), hA = r.mul(sInv).mod(R), r2 = this._curve.G.mult2(hG, hA, this._point).x; if (r.equals(0) || s.equals(0) || r.greaterEquals(R) || s.greaterEquals(R) || !r2.equals(r)) { throw (new sjcl.exception.corrupt("signature didn't check out")); } return true; }; sjcl.ecc.ecdsa.secretKey.prototype.canonicalizeSignature = function(rs) { var w = sjcl.bitArray, R = this._curve.r, l = R.bitLength(); var r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)), s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)); // For a canonical signature we want the lower of two possible values for s // 0 < s <= n/2 if (!R.copy().halveM().greaterEquals(s)) { s = R.sub(s); } return w.concat(r.toBits(l), s.toBits(l)); }; sjcl.ecc.ecdsa.secretKey.prototype.signDER = function(hash, paranoia) { return this.encodeDER(this.sign(hash, paranoia)); }; sjcl.ecc.ecdsa.secretKey.prototype.encodeDER = function(rs) { var w = sjcl.bitArray, R = this._curve.r, l = R.bitLength(); var rb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,0,l)), sb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,l,2*l)); // Drop empty leading bytes while (!rb[0] && rb.length) rb.shift(); while (!sb[0] && sb.length) sb.shift(); // If high bit is set, prepend an extra zero byte (DER signed integer) if (rb[0] & 0x80) rb.unshift(0); if (sb[0] & 0x80) sb.unshift(0); var buffer = [].concat( 0x30, 4 + rb.length + sb.length, 0x02, rb.length, rb, 0x02, sb.length, sb ); return sjcl.codec.bytes.toBits(buffer); }; /** * This module uses the public key recovery method * described in SEC 1: Elliptic Curve Cryptography, * section 4.1.6, "Public Key Recovery Operation". * http://www.secg.org/download/aid-780/sec1-v2.pdf * * Implementation based on: * https://github.com/bitcoinjs/bitcoinjs-lib/blob/89cf731ac7309b4f98994e3b4b67b7226020181f/src/ecdsa.js */ // Defined here so that this value only needs to be calculated once var FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR; /** * Sign the given hash such that the public key, prepending an extra byte * so that the public key will be recoverable from the signature * * @param {bitArray} hash * @param {Number} paranoia * @returns {bitArray} Signature formatted as bitArray */ sjcl.ecc.ecdsa.secretKey.prototype.signWithRecoverablePublicKey = function(hash, paranoia, k_for_testing) { var self = this; // Convert hash to bits and determine encoding for output var hash_bits; if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') { hash_bits = hash; } else { throw new sjcl.exception.invalid('hash. Must be a bitArray'); } // Sign hash with standard, canonicalized method var standard_signature = self.sign(hash_bits, paranoia, k_for_testing); var canonical_signature = self.canonicalizeSignature(standard_signature); // Extract r and s signature components from canonical signature var r_and_s = getRandSFromSignature(self._curve, canonical_signature); // Rederive public key var public_key = self._curve.G.mult(sjcl.bn.fromBits(self.get())); // Determine recovery factor based on which possible value // returns the correct public key var recovery_factor = calculateRecoveryFactor(self._curve, r_and_s.r, r_and_s.s, hash_bits, public_key); // Prepend recovery_factor to signature and encode in DER // The value_to_prepend should be 4 bytes total var value_to_prepend = recovery_factor + 27; var final_signature_bits = sjcl.bitArray.concat([value_to_prepend], canonical_signature); // Return value in bits return final_signature_bits; }; /** * Recover the public key from a signature created with the * signWithRecoverablePublicKey method in this module * * @static * * @param {bitArray} hash * @param {bitArray} signature * @param {sjcl.ecc.curve} [sjcl.ecc.curves['c256']] curve * @returns {sjcl.ecc.ecdsa.publicKey} Public key */ sjcl.ecc.ecdsa.publicKey.recoverFromSignature = function(hash, signature, curve) { if (!signature || signature instanceof sjcl.ecc.curve) { throw new sjcl.exception.invalid('must supply hash and signature to recover public key'); } if (!curve) { curve = sjcl.ecc.curves['c256']; } // Convert hash to bits and determine encoding for output var hash_bits; if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') { hash_bits = hash; } else { throw new sjcl.exception.invalid('hash. Must be a bitArray'); } var signature_bits; if (typeof signature === 'object' && signature.length > 0 && typeof signature[0] === 'number') { signature_bits = signature; } else { throw new sjcl.exception.invalid('signature. Must be a bitArray'); } // Extract recovery_factor from first 4 bytes var recovery_factor = signature_bits[0] - 27; if (recovery_factor < 0 || recovery_factor > 3) { throw new sjcl.exception.invalid('signature. Signature must be generated with algorithm ' + 'that prepends the recovery factor in order to recover the public key'); } // Separate r and s values var r_and_s = getRandSFromSignature(curve, signature_bits.slice(1)); var signature_r = r_and_s.r; var signature_s = r_and_s.s; // Recover public key using recovery_factor var recovered_public_key_point = recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor); var recovered_public_key = new sjcl.ecc.ecdsa.publicKey(curve, recovered_public_key_point); return recovered_public_key; }; /** * Retrieve the r and s components of a signature * * @param {sjcl.ecc.curve} curve * @param {bitArray} signature * @returns {Object} Object with 'r' and 's' fields each as an sjcl.bn */ function getRandSFromSignature(curve, signature) { var r_length = curve.r.bitLength(); return { r: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, 0, r_length)), s: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, r_length, sjcl.bitArray.bitLength(signature))) }; }; /** * Determine the recovery factor by trying all four * possibilities and figuring out which results in the * correct public key * * @param {sjcl.ecc.curve} curve * @param {sjcl.bn} r * @param {sjcl.bn} s * @param {bitArray} hash_bits * @param {sjcl.ecc.point} original_public_key_point * @returns {Number, 0-3} Recovery factor */ function calculateRecoveryFactor(curve, r, s, hash_bits, original_public_key_point) { var original_public_key_point_bits = original_public_key_point.toBits(); // TODO: verify that it is possible for the recovery_factor to be 2 or 3, // we may only need 1 bit because the canonical signature might remove the // possibility of us needing to "use the second candidate key" for (var possible_factor = 0; possible_factor < 4; possible_factor++) { var resulting_public_key_point; try { resulting_public_key_point = recoverPublicKeyPointFromSignature(curve, r, s, hash_bits, possible_factor); } catch (err) { // console.log(err, err.stack); continue; } if (sjcl.bitArray.equal(resulting_public_key_point.toBits(), original_public_key_point_bits)) { return possible_factor; } } throw new sjcl.exception.bug('unable to calculate recovery factor from signature'); }; /** * Recover the public key from the signature. * * @param {sjcl.ecc.curve} curve * @param {sjcl.bn} r * @param {sjcl.bn} s * @param {bitArray} hash_bits * @param {Number, 0-3} recovery_factor * @returns {sjcl.point} Public key corresponding to signature */ function recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor) { var field_order = curve.r; var field_modulus = curve.field.modulus; // Reduce the recovery_factor to the two bits used recovery_factor = recovery_factor & 3; // The less significant bit specifies whether the y coordinate // of the compressed point is even or not. var compressed_point_y_coord_is_even = recovery_factor & 1; // The more significant bit specifies whether we should use the // first or second candidate key. var use_second_candidate_key = recovery_factor >> 1; // Calculate (field_order + 1) / 4 if (!FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR) { FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR = field_modulus.add(1).div(4); } // In the paper they write "1. For j from 0 to h do the following..." // That is not necessary here because we are given the recovery_factor // step 1.1 Let x = r + jn // Here "j" is either 0 or 1 var x; if (use_second_candidate_key) { x = signature_r.add(field_order); } else { x = signature_r; } // step 1.2 and 1.3 convert x to an elliptic curve point // Following formula in section 2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion var alpha = x.mul(x).mul(x).add(curve.a.mul(x)).add(curve.b).mod(field_modulus); var beta = alpha.powermodMontgomery(FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR, field_modulus); // If beta is even but y isn't or // if beta is odd and y is even // then subtract beta from the field_modulus var y; var beta_is_even = beta.mod(2).equals(0); if (beta_is_even && !compressed_point_y_coord_is_even || !beta_is_even && compressed_point_y_coord_is_even) { y = beta; } else { y = field_modulus.sub(beta); } // generated_point_R is the point generated from x and y var generated_point_R = new sjcl.ecc.point(curve, x, y); // step 1.4 check that R is valid and R x field_order !== infinity // TODO: add check for R x field_order === infinity if (!generated_point_R.isValidPoint()) { throw new sjcl.exception.corrupt('point R. Not a valid point on the curve. Cannot recover public key'); } // step 1.5 Compute e from M var message_e = sjcl.bn.fromBits(hash_bits); var message_e_neg = new sjcl.bn(0).sub(message_e).mod(field_order); // step 1.6 Compute Q = r^-1 (sR - eG) // console.log('r: ', signature_r); var signature_r_inv = signature_r.inverseMod(field_order); var public_key_point = generated_point_R.mult2(signature_s, message_e_neg, curve.G).mult(signature_r_inv); // Validate public key point if (!public_key_point.isValidPoint()) { throw new sjcl.exception.corrupt('public_key_point. Not a valid point on the curve. Cannot recover public key'); } // Verify that this public key matches the signature if (!verify_raw(curve, message_e, signature_r, signature_s, public_key_point)) { throw new sjcl.exception.corrupt('cannot recover public key'); } return public_key_point; }; /** * Verify a signature given the raw components * using method defined in section 4.1.5: * "Alternative Verifying Operation" * * @param {sjcl.ecc.curve} curve * @param {sjcl.bn} e * @param {sjcl.bn} r * @param {sjcl.bn} s * @param {sjcl.ecc.point} public_key_point * @returns {Boolean} */ function verify_raw(curve, e, r, s, public_key_point) { var field_order = curve.r; // Return false if r is out of bounds if ((new sjcl.bn(1)).greaterEquals(r) || r.greaterEquals(new sjcl.bn(field_order))) { return false; } // Return false if s is out of bounds if ((new sjcl.bn(1)).greaterEquals(s) || s.greaterEquals(new sjcl.bn(field_order))) { return false; } // Check that r = (u1 + u2)G // u1 = e x s^-1 (mod field_order) // u2 = r x s^-1 (mod field_order) var s_mod_inverse_field_order = s.inverseMod(field_order); var u1 = e.mul(s_mod_inverse_field_order).mod(field_order); var u2 = r.mul(s_mod_inverse_field_order).mod(field_order); var point_computed = curve.G.mult2(u1, u2, public_key_point); return r.equals(point_computed.x.mod(field_order)); }; sjcl.bn.prototype.jacobi = function (that) { var a = this; that = new sjcl.bn(that); if (that.sign() === -1) return; // 1. If a = 0 then return(0). if (a.equals(0)) { return 0; } // 2. If a = 1 then return(1). if (a.equals(1)) { return 1; } var s = 0; // 3. Write a = 2^e * a1, where a1 is odd. var e = 0; while (!a.testBit(e)) e++; var a1 = a.shiftRight(e); // 4. If e is even then set s ← 1. if ((e & 1) === 0) { s = 1; } else { var residue = that.modInt(8); if (residue === 1 || residue === 7) { // Otherwise set s ← 1 if n ≡ 1 or 7 (mod 8) s = 1; } else if (residue === 3 || residue === 5) { // Or set s ← −1 if n ≡ 3 or 5 (mod 8). s = -1; } } // 5. If n ≡ 3 (mod 4) and a1 ≡ 3 (mod 4) then set s ← −s. if (that.modInt(4) === 3 && a1.modInt(4) === 3) { s = -s; } if (a1.equals(1)) { return s; } else { return s * that.mod(a1).jacobi(a1); } };