/** @fileOverview Javascript cryptography implementation.
*
* Crush to remove comments, shorten variable names and
* generally reduce transmission size.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
"use strict";
/*jslint indent: 2, bitwise: false, nomen: false, plusplus: false, white: false, regexp: false */
/*global document, window, escape, unescape */
/** @namespace The Stanford Javascript Crypto Library, top-level namespace. */
var sjcl = {
/** @namespace Symmetric ciphers. */
cipher: {},
/** @namespace Hash functions. Right now only SHA256 is implemented. */
hash: {},
/** @namespace Key exchange functions. Right now only SRP is implemented. */
keyexchange: {},
/** @namespace Block cipher modes of operation. */
mode: {},
/** @namespace Miscellaneous. HMAC and PBKDF2. */
misc: {},
/**
* @namespace Bit array encoders and decoders.
*
* @description
* The members of this namespace are functions which translate between
* SJCL's bitArrays and other objects (usually strings). Because it
* isn't always clear which direction is encoding and which is decoding,
* the method names are "fromBits" and "toBits".
*/
codec: {},
/** @namespace Exceptions. */
exception: {
/** @constructor Ciphertext is corrupt. */
corrupt: function(message) {
this.toString = function() { return "CORRUPT: "+this.message; };
this.message = message;
},
/** @constructor Invalid parameter. */
invalid: function(message) {
this.toString = function() { return "INVALID: "+this.message; };
this.message = message;
},
/** @constructor Bug or missing feature in SJCL. @constructor */
bug: function(message) {
this.toString = function() { return "BUG: "+this.message; };
this.message = message;
},
/** @constructor Something isn't ready. */
notReady: function(message) {
this.toString = function() { return "NOT READY: "+this.message; };
this.message = message;
}
}
};
if(typeof module != 'undefined' && module.exports){
module.exports = sjcl;
}
/** @fileOverview Low-level AES implementation.
*
* This file contains a low-level implementation of AES, optimized for
* size and for efficiency on several browsers. It is based on
* OpenSSL's aes_core.c, a public-domain implementation by Vincent
* Rijmen, Antoon Bosselaers and Paulo Barreto.
*
* An older version of this implementation is available in the public
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
* Stanford University 2008-2010 and BSD-licensed for liability
* reasons.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Schedule out an AES key for both encryption and decryption. This
* is a low-level class. Use a cipher mode to do bulk encryption.
*
* @constructor
* @param {Array} key The key as an array of 4, 6 or 8 words.
*
* @class Advanced Encryption Standard (low-level interface)
*/
sjcl.cipher.aes = function (key) {
if (!this._tables[0][0][0]) {
this._precompute();
}
var i, j, tmp,
encKey, decKey,
sbox = this._tables[0][4], decTable = this._tables[1],
keyLen = key.length, rcon = 1;
if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) {
throw new sjcl.exception.invalid("invalid aes key size");
}
this._key = [encKey = key.slice(0), decKey = []];
// schedule encryption keys
for (i = keyLen; i < 4 * keyLen + 28; i++) {
tmp = encKey[i-1];
// apply sbox
if (i%keyLen === 0 || (keyLen === 8 && i%keyLen === 4)) {
tmp = sbox[tmp>>>24]<<24 ^ sbox[tmp>>16&255]<<16 ^ sbox[tmp>>8&255]<<8 ^ sbox[tmp&255];
// shift rows and add rcon
if (i%keyLen === 0) {
tmp = tmp<<8 ^ tmp>>>24 ^ rcon<<24;
rcon = rcon<<1 ^ (rcon>>7)*283;
}
}
encKey[i] = encKey[i-keyLen] ^ tmp;
}
// schedule decryption keys
for (j = 0; i; j++, i--) {
tmp = encKey[j&3 ? i : i - 4];
if (i<=4 || j<4) {
decKey[j] = tmp;
} else {
decKey[j] = decTable[0][sbox[tmp>>>24 ]] ^
decTable[1][sbox[tmp>>16 & 255]] ^
decTable[2][sbox[tmp>>8 & 255]] ^
decTable[3][sbox[tmp & 255]];
}
}
};
sjcl.cipher.aes.prototype = {
// public
/* Something like this might appear here eventually
name: "AES",
blockSize: 4,
keySizes: [4,6,8],
*/
/**
* Encrypt an array of 4 big-endian words.
* @param {Array} data The plaintext.
* @return {Array} The ciphertext.
*/
encrypt:function (data) { return this._crypt(data,0); },
/**
* Decrypt an array of 4 big-endian words.
* @param {Array} data The ciphertext.
* @return {Array} The plaintext.
*/
decrypt:function (data) { return this._crypt(data,1); },
/**
* The expanded S-box and inverse S-box tables. These will be computed
* on the client so that we don't have to send them down the wire.
*
* There are two tables, _tables[0] is for encryption and
* _tables[1] is for decryption.
*
* The first 4 sub-tables are the expanded S-box with MixColumns. The
* last (_tables[01][4]) is the S-box itself.
*
* @private
*/
_tables: [[[],[],[],[],[]],[[],[],[],[],[]]],
/**
* Expand the S-box tables.
*
* @private
*/
_precompute: function () {
var encTable = this._tables[0], decTable = this._tables[1],
sbox = encTable[4], sboxInv = decTable[4],
i, x, xInv, d=[], th=[], x2, x4, x8, s, tEnc, tDec;
// Compute double and third tables
for (i = 0; i < 256; i++) {
th[( d[i] = i<<1 ^ (i>>7)*283 )^i]=i;
}
for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) {
// Compute sbox
s = xInv ^ xInv<<1 ^ xInv<<2 ^ xInv<<3 ^ xInv<<4;
s = s>>8 ^ s&255 ^ 99;
sbox[x] = s;
sboxInv[s] = x;
// Compute MixColumns
x8 = d[x4 = d[x2 = d[x]]];
tDec = x8*0x1010101 ^ x4*0x10001 ^ x2*0x101 ^ x*0x1010100;
tEnc = d[s]*0x101 ^ s*0x1010100;
for (i = 0; i < 4; i++) {
encTable[i][x] = tEnc = tEnc<<24 ^ tEnc>>>8;
decTable[i][s] = tDec = tDec<<24 ^ tDec>>>8;
}
}
// Compactify. Considerable speedup on Firefox.
for (i = 0; i < 5; i++) {
encTable[i] = encTable[i].slice(0);
decTable[i] = decTable[i].slice(0);
}
},
/**
* Encryption and decryption core.
* @param {Array} input Four words to be encrypted or decrypted.
* @param dir The direction, 0 for encrypt and 1 for decrypt.
* @return {Array} The four encrypted or decrypted words.
* @private
*/
_crypt:function (input, dir) {
if (input.length !== 4) {
throw new sjcl.exception.invalid("invalid aes block size");
}
var key = this._key[dir],
// state variables a,b,c,d are loaded with pre-whitened data
a = input[0] ^ key[0],
b = input[dir ? 3 : 1] ^ key[1],
c = input[2] ^ key[2],
d = input[dir ? 1 : 3] ^ key[3],
a2, b2, c2,
nInnerRounds = key.length/4 - 2,
i,
kIndex = 4,
out = [0,0,0,0],
table = this._tables[dir],
// load up the tables
t0 = table[0],
t1 = table[1],
t2 = table[2],
t3 = table[3],
sbox = table[4];
// Inner rounds. Cribbed from OpenSSL.
for (i = 0; i < nInnerRounds; i++) {
a2 = t0[a>>>24] ^ t1[b>>16 & 255] ^ t2[c>>8 & 255] ^ t3[d & 255] ^ key[kIndex];
b2 = t0[b>>>24] ^ t1[c>>16 & 255] ^ t2[d>>8 & 255] ^ t3[a & 255] ^ key[kIndex + 1];
c2 = t0[c>>>24] ^ t1[d>>16 & 255] ^ t2[a>>8 & 255] ^ t3[b & 255] ^ key[kIndex + 2];
d = t0[d>>>24] ^ t1[a>>16 & 255] ^ t2[b>>8 & 255] ^ t3[c & 255] ^ key[kIndex + 3];
kIndex += 4;
a=a2; b=b2; c=c2;
}
// Last round.
for (i = 0; i < 4; i++) {
out[dir ? 3&-i : i] =
sbox[a>>>24 ]<<24 ^
sbox[b>>16 & 255]<<16 ^
sbox[c>>8 & 255]<<8 ^
sbox[d & 255] ^
key[kIndex++];
a2=a; a=b; b=c; c=d; d=a2;
}
return out;
}
};
/** @fileOverview Arrays of bits, encoded as arrays of Numbers.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Arrays of bits, encoded as arrays of Numbers.
*
* @description
*
* These objects are the currency accepted by SJCL's crypto functions.
*
*
*
* Most of our crypto primitives operate on arrays of 4-byte words internally,
* but many of them can take arguments that are not a multiple of 4 bytes.
* This library encodes arrays of bits (whose size need not be a multiple of 8
* bits) as arrays of 32-bit words. The bits are packed, big-endian, into an
* array of words, 32 bits at a time. Since the words are double-precision
* floating point numbers, they fit some extra data. We use this (in a private,
* possibly-changing manner) to encode the number of bits actually present
* in the last word of the array.
*
*
*
* Because bitwise ops clear this out-of-band data, these arrays can be passed
* to ciphers like AES which want arrays of words.
*
*/
sjcl.bitArray = {
/**
* Array slices in units of bits.
* @param {bitArray} a The array to slice.
* @param {Number} bstart The offset to the start of the slice, in bits.
* @param {Number} bend The offset to the end of the slice, in bits. If this is undefined,
* slice until the end of the array.
* @return {bitArray} The requested slice.
*/
bitSlice: function (a, bstart, bend) {
a = sjcl.bitArray._shiftRight(a.slice(bstart/32), 32 - (bstart & 31)).slice(1);
return (bend === undefined) ? a : sjcl.bitArray.clamp(a, bend-bstart);
},
/**
* Extract a number packed into a bit array.
* @param {bitArray} a The array to slice.
* @param {Number} bstart The offset to the start of the slice, in bits.
* @param {Number} length The length of the number to extract.
* @return {Number} The requested slice.
*/
extract: function(a, bstart, blength) {
// FIXME: this Math.floor is not necessary at all, but for some reason
// seems to suppress a bug in the Chromium JIT.
var x, sh = Math.floor((-bstart-blength) & 31);
if ((bstart + blength - 1 ^ bstart) & -32) {
// it crosses a boundary
x = (a[bstart/32|0] << (32 - sh)) ^ (a[bstart/32+1|0] >>> sh);
} else {
// within a single word
x = a[bstart/32|0] >>> sh;
}
return x & ((1< 0 && len) {
a[l-1] = sjcl.bitArray.partial(len, a[l-1] & 0x80000000 >> (len-1), 1);
}
return a;
},
/**
* Make a partial word for a bit array.
* @param {Number} len The number of bits in the word.
* @param {Number} x The bits.
* @param {Number} [0] _end Pass 1 if x has already been shifted to the high side.
* @return {Number} The partial word.
*/
partial: function (len, x, _end) {
if (len === 32) { return x; }
return (_end ? x|0 : x << (32-len)) + len * 0x10000000000;
},
/**
* Get the number of bits used by a partial word.
* @param {Number} x The partial word.
* @return {Number} The number of bits used by the partial word.
*/
getPartial: function (x) {
return Math.round(x/0x10000000000) || 32;
},
/**
* Compare two arrays for equality in a predictable amount of time.
* @param {bitArray} a The first array.
* @param {bitArray} b The second array.
* @return {boolean} true if a == b; false otherwise.
*/
equal: function (a, b) {
if (sjcl.bitArray.bitLength(a) !== sjcl.bitArray.bitLength(b)) {
return false;
}
var x = 0, i;
for (i=0; i= 32; shift -= 32) {
out.push(carry);
carry = 0;
}
if (shift === 0) {
return out.concat(a);
}
for (i=0; i>>shift);
carry = a[i] << (32-shift);
}
last2 = a.length ? a[a.length-1] : 0;
shift2 = sjcl.bitArray.getPartial(last2);
out.push(sjcl.bitArray.partial(shift+shift2 & 31, (shift + shift2 > 32) ? carry : out.pop(),1));
return out;
},
/** xor a block of 4 words together.
* @private
*/
_xor4: function(x,y) {
return [x[0]^y[0],x[1]^y[1],x[2]^y[2],x[3]^y[3]];
}
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace UTF-8 strings */
sjcl.codec.utf8String = {
/** Convert from a bitArray to a UTF-8 string. */
fromBits: function (arr) {
var out = "", bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i>> 24);
tmp <<= 8;
}
return decodeURIComponent(escape(out));
},
/** Convert from a UTF-8 string to a bitArray. */
toBits: function (str) {
str = unescape(encodeURIComponent(str));
var out = [], i, tmp=0;
for (i=0; i>>bits) >>> 26);
if (bits < 6) {
ta = arr[i] << (6-bits);
bits += 26;
i++;
} else {
ta <<= 6;
bits -= 6;
}
}
while ((out.length & 3) && !_noEquals) { out += "="; }
return out;
},
/** Convert from a base64 string to a bitArray */
toBits: function(str, _url) {
str = str.replace(/\s|=/g,'');
var out = [], i, bits=0, c = sjcl.codec.base64._chars, ta=0, x;
if (_url) c = c.substr(0,62) + '-_';
for (i=0; i 26) {
bits -= 26;
out.push(ta ^ x>>>bits);
ta = x << (32-bits);
} else {
bits += 6;
ta ^= x << (32-bits);
}
}
if (bits&56) {
out.push(sjcl.bitArray.partial(bits&56, ta, 1));
}
return out;
}
};
sjcl.codec.base64url = {
fromBits: function (arr) { return sjcl.codec.base64.fromBits(arr,1,1); },
toBits: function (str) { return sjcl.codec.base64.toBits(str,1); }
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Arrays of bytes */
sjcl.codec.bytes = {
/** Convert from a bitArray to an array of bytes. */
fromBits: function (arr) {
var out = [], bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i>> 24);
tmp <<= 8;
}
return out;
},
/** Convert from an array of bytes to a bitArray. */
toBits: function (bytes) {
var out = [], i, tmp=0;
for (i=0; i>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) +
(b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) +
w[i&15] + w[(i+9) & 15]) | 0;
}
tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0;
// shift register
h7 = h6; h6 = h5; h5 = h4;
h4 = h3 + tmp | 0;
h3 = h2; h2 = h1; h1 = h0;
h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0;
}
h[0] = h[0]+h0 | 0;
h[1] = h[1]+h1 | 0;
h[2] = h[2]+h2 | 0;
h[3] = h[3]+h3 | 0;
h[4] = h[4]+h4 | 0;
h[5] = h[5]+h5 | 0;
h[6] = h[6]+h6 | 0;
h[7] = h[7]+h7 | 0;
}
};
/** @fileOverview Javascript SHA-512 implementation.
*
* This implementation was written for CryptoJS by Jeff Mott and adapted for
* SJCL by Stefan Thomas.
*
* CryptoJS (c) 2009–2012 by Jeff Mott. All rights reserved.
* Released with New BSD License
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
* @author Jeff Mott
* @author Stefan Thomas
*/
/**
* Context for a SHA-512 operation in progress.
* @constructor
* @class Secure Hash Algorithm, 512 bits.
*/
sjcl.hash.sha512 = function (hash) {
if (!this._key[0]) { this._precompute(); }
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
sjcl.hash.sha512.hash = function (data) {
return (new sjcl.hash.sha512()).update(data).finalize();
};
sjcl.hash.sha512.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 1024,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
for (i = 1024+ol & -1024; i <= nl; i+= 1024) {
this._block(b.splice(0,32));
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 32 words, less the 4 length words.
for (i = b.length + 4; i & 31; i++) {
b.push(0);
}
// append the length
b.push(0);
b.push(0);
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,32));
}
this.reset();
return h;
},
/**
* The SHA-512 initialization vector, to be precomputed.
* @private
*/
_init:[],
/**
* Least significant 24 bits of SHA512 initialization values.
*
* Javascript only has 53 bits of precision, so we compute the 40 most
* significant bits and add the remaining 24 bits as constants.
*
* @private
*/
_initr: [ 0xbcc908, 0xcaa73b, 0x94f82b, 0x1d36f1, 0xe682d1, 0x3e6c1f, 0x41bd6b, 0x7e2179 ],
/*
_init:
[0x6a09e667, 0xf3bcc908, 0xbb67ae85, 0x84caa73b, 0x3c6ef372, 0xfe94f82b, 0xa54ff53a, 0x5f1d36f1,
0x510e527f, 0xade682d1, 0x9b05688c, 0x2b3e6c1f, 0x1f83d9ab, 0xfb41bd6b, 0x5be0cd19, 0x137e2179],
*/
/**
* The SHA-512 hash key, to be precomputed.
* @private
*/
_key:[],
/**
* Least significant 24 bits of SHA512 key values.
* @private
*/
_keyr:
[0x28ae22, 0xef65cd, 0x4d3b2f, 0x89dbbc, 0x48b538, 0x05d019, 0x194f9b, 0x6d8118,
0x030242, 0x706fbe, 0xe4b28c, 0xffb4e2, 0x7b896f, 0x1696b1, 0xc71235, 0x692694,
0xf14ad2, 0x4f25e3, 0x8cd5b5, 0xac9c65, 0x2b0275, 0xa6e483, 0x41fbd4, 0x1153b5,
0x66dfab, 0xb43210, 0xfb213f, 0xef0ee4, 0xa88fc2, 0x0aa725, 0x03826f, 0x0e6e70,
0xd22ffc, 0x26c926, 0xc42aed, 0x95b3df, 0xaf63de, 0x77b2a8, 0xedaee6, 0x82353b,
0xf10364, 0x423001, 0xf89791, 0x54be30, 0xef5218, 0x65a910, 0x71202a, 0xbbd1b8,
0xd2d0c8, 0x41ab53, 0x8eeb99, 0x9b48a8, 0xc95a63, 0x418acb, 0x63e373, 0xb2b8a3,
0xefb2fc, 0x172f60, 0xf0ab72, 0x6439ec, 0x631e28, 0x82bde9, 0xc67915, 0x72532b,
0x26619c, 0xc0c207, 0xe0eb1e, 0x6ed178, 0x176fba, 0xc898a6, 0xf90dae, 0x1c471b,
0x047d84, 0xc72493, 0xc9bebc, 0x100d4c, 0x3e42b6, 0x657e2a, 0xd6faec, 0x475817],
/*
_key:
[0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd, 0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc,
0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019, 0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118,
0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe, 0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2,
0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1, 0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694,
0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3, 0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65,
0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483, 0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5,
0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210, 0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4,
0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725, 0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70,
0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926, 0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df,
0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8, 0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b,
0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001, 0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30,
0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910, 0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8,
0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53, 0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8,
0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb, 0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3,
0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60, 0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec,
0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9, 0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b,
0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207, 0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178,
0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6, 0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b,
0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493, 0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c,
0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a, 0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817],
*/
/**
* Function to precompute _init and _key.
* @private
*/
_precompute: function () {
// XXX: This code is for precomputing the SHA256 constants, change for
// SHA512 and re-enable.
var i = 0, prime = 2, factor;
function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
function frac2(x) { return (x-Math.floor(x)) * 0x10000000000 & 0xff; }
outer: for (; i<80; prime++) {
for (factor=2; factor*factor <= prime; factor++) {
if (prime % factor === 0) {
// not a prime
continue outer;
}
}
if (i<8) {
this._init[i*2] = frac(Math.pow(prime, 1/2));
this._init[i*2+1] = (frac2(Math.pow(prime, 1/2)) << 24) | this._initr[i];
}
this._key[i*2] = frac(Math.pow(prime, 1/3));
this._key[i*2+1] = (frac2(Math.pow(prime, 1/3)) << 24) | this._keyr[i];
i++;
}
},
/**
* Perform one cycle of SHA-512.
* @param {bitArray} words one block of words.
* @private
*/
_block:function (words) {
var i, wrh, wrl,
w = words.slice(0),
h = this._h,
k = this._key,
h0h = h[ 0], h0l = h[ 1], h1h = h[ 2], h1l = h[ 3],
h2h = h[ 4], h2l = h[ 5], h3h = h[ 6], h3l = h[ 7],
h4h = h[ 8], h4l = h[ 9], h5h = h[10], h5l = h[11],
h6h = h[12], h6l = h[13], h7h = h[14], h7l = h[15];
// Working variables
var ah = h0h, al = h0l, bh = h1h, bl = h1l,
ch = h2h, cl = h2l, dh = h3h, dl = h3l,
eh = h4h, el = h4l, fh = h5h, fl = h5l,
gh = h6h, gl = h6l, hh = h7h, hl = h7l;
for (i=0; i<80; i++) {
// load up the input word for this round
if (i<16) {
wrh = w[i * 2];
wrl = w[i * 2 + 1];
} else {
// Gamma0
var gamma0xh = w[(i-15) * 2];
var gamma0xl = w[(i-15) * 2 + 1];
var gamma0h =
((gamma0xl << 31) | (gamma0xh >>> 1)) ^
((gamma0xl << 24) | (gamma0xh >>> 8)) ^
(gamma0xh >>> 7);
var gamma0l =
((gamma0xh << 31) | (gamma0xl >>> 1)) ^
((gamma0xh << 24) | (gamma0xl >>> 8)) ^
((gamma0xh << 25) | (gamma0xl >>> 7));
// Gamma1
var gamma1xh = w[(i-2) * 2];
var gamma1xl = w[(i-2) * 2 + 1];
var gamma1h =
((gamma1xl << 13) | (gamma1xh >>> 19)) ^
((gamma1xh << 3) | (gamma1xl >>> 29)) ^
(gamma1xh >>> 6);
var gamma1l =
((gamma1xh << 13) | (gamma1xl >>> 19)) ^
((gamma1xl << 3) | (gamma1xh >>> 29)) ^
((gamma1xh << 26) | (gamma1xl >>> 6));
// Shortcuts
var wr7h = w[(i-7) * 2];
var wr7l = w[(i-7) * 2 + 1];
var wr16h = w[(i-16) * 2];
var wr16l = w[(i-16) * 2 + 1];
// W(round) = gamma0 + W(round - 7) + gamma1 + W(round - 16)
wrl = gamma0l + wr7l;
wrh = gamma0h + wr7h + ((wrl >>> 0) < (gamma0l >>> 0) ? 1 : 0);
wrl += gamma1l;
wrh += gamma1h + ((wrl >>> 0) < (gamma1l >>> 0) ? 1 : 0);
wrl += wr16l;
wrh += wr16h + ((wrl >>> 0) < (wr16l >>> 0) ? 1 : 0);
}
w[i*2] = wrh |= 0;
w[i*2 + 1] = wrl |= 0;
// Ch
var chh = (eh & fh) ^ (~eh & gh);
var chl = (el & fl) ^ (~el & gl);
// Maj
var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch);
var majl = (al & bl) ^ (al & cl) ^ (bl & cl);
// Sigma0
var sigma0h = ((al << 4) | (ah >>> 28)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7));
var sigma0l = ((ah << 4) | (al >>> 28)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7));
// Sigma1
var sigma1h = ((el << 18) | (eh >>> 14)) ^ ((el << 14) | (eh >>> 18)) ^ ((eh << 23) | (el >>> 9));
var sigma1l = ((eh << 18) | (el >>> 14)) ^ ((eh << 14) | (el >>> 18)) ^ ((el << 23) | (eh >>> 9));
// K(round)
var krh = k[i*2];
var krl = k[i*2+1];
// t1 = h + sigma1 + ch + K(round) + W(round)
var t1l = hl + sigma1l;
var t1h = hh + sigma1h + ((t1l >>> 0) < (hl >>> 0) ? 1 : 0);
t1l += chl;
t1h += chh + ((t1l >>> 0) < (chl >>> 0) ? 1 : 0);
t1l += krl;
t1h += krh + ((t1l >>> 0) < (krl >>> 0) ? 1 : 0);
t1l += wrl;
t1h += wrh + ((t1l >>> 0) < (wrl >>> 0) ? 1 : 0);
// t2 = sigma0 + maj
var t2l = sigma0l + majl;
var t2h = sigma0h + majh + ((t2l >>> 0) < (sigma0l >>> 0) ? 1 : 0);
// Update working variables
hh = gh;
hl = gl;
gh = fh;
gl = fl;
fh = eh;
fl = el;
el = (dl + t1l) | 0;
eh = (dh + t1h + ((el >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
dh = ch;
dl = cl;
ch = bh;
cl = bl;
bh = ah;
bl = al;
al = (t1l + t2l) | 0;
ah = (t1h + t2h + ((al >>> 0) < (t1l >>> 0) ? 1 : 0)) | 0;
}
// Intermediate hash
h0l = h[1] = (h0l + al) | 0;
h[0] = (h0h + ah + ((h0l >>> 0) < (al >>> 0) ? 1 : 0)) | 0;
h1l = h[3] = (h1l + bl) | 0;
h[2] = (h1h + bh + ((h1l >>> 0) < (bl >>> 0) ? 1 : 0)) | 0;
h2l = h[5] = (h2l + cl) | 0;
h[4] = (h2h + ch + ((h2l >>> 0) < (cl >>> 0) ? 1 : 0)) | 0;
h3l = h[7] = (h3l + dl) | 0;
h[6] = (h3h + dh + ((h3l >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
h4l = h[9] = (h4l + el) | 0;
h[8] = (h4h + eh + ((h4l >>> 0) < (el >>> 0) ? 1 : 0)) | 0;
h5l = h[11] = (h5l + fl) | 0;
h[10] = (h5h + fh + ((h5l >>> 0) < (fl >>> 0) ? 1 : 0)) | 0;
h6l = h[13] = (h6l + gl) | 0;
h[12] = (h6h + gh + ((h6l >>> 0) < (gl >>> 0) ? 1 : 0)) | 0;
h7l = h[15] = (h7l + hl) | 0;
h[14] = (h7h + hh + ((h7l >>> 0) < (hl >>> 0) ? 1 : 0)) | 0;
}
};
/** @fileOverview Javascript SHA-1 implementation.
*
* Based on the implementation in RFC 3174, method 1, and on the SJCL
* SHA-256 implementation.
*
* @author Quinn Slack
*/
/**
* Context for a SHA-1 operation in progress.
* @constructor
* @class Secure Hash Algorithm, 160 bits.
*/
sjcl.hash.sha1 = function (hash) {
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 5 big-endian words.
*/
sjcl.hash.sha1.hash = function (data) {
return (new sjcl.hash.sha1()).update(data).finalize();
};
sjcl.hash.sha1.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 512,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
for (i = this.blockSize+ol & -this.blockSize; i <= nl;
i+= this.blockSize) {
this._block(b.splice(0,16));
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 5 big-endian words. TODO
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 16 words, less the 2 length words.
for (i = b.length + 2; i & 15; i++) {
b.push(0);
}
// append the length
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,16));
}
this.reset();
return h;
},
/**
* The SHA-1 initialization vector.
* @private
*/
_init:[0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0],
/**
* The SHA-1 hash key.
* @private
*/
_key:[0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6],
/**
* The SHA-1 logical functions f(0), f(1), ..., f(79).
* @private
*/
_f:function(t, b, c, d) {
if (t <= 19) {
return (b & c) | (~b & d);
} else if (t <= 39) {
return b ^ c ^ d;
} else if (t <= 59) {
return (b & c) | (b & d) | (c & d);
} else if (t <= 79) {
return b ^ c ^ d;
}
},
/**
* Circular left-shift operator.
* @private
*/
_S:function(n, x) {
return (x << n) | (x >>> 32-n);
},
/**
* Perform one cycle of SHA-1.
* @param {bitArray} words one block of words.
* @private
*/
_block:function (words) {
var t, tmp, a, b, c, d, e,
w = words.slice(0),
h = this._h,
k = this._key;
a = h[0]; b = h[1]; c = h[2]; d = h[3]; e = h[4];
for (t=0; t<=79; t++) {
if (t >= 16) {
w[t] = this._S(1, w[t-3] ^ w[t-8] ^ w[t-14] ^ w[t-16]);
}
tmp = (this._S(5, a) + this._f(t, b, c, d) + e + w[t] +
this._key[Math.floor(t/20)]) | 0;
e = d;
d = c;
c = this._S(30, b);
b = a;
a = tmp;
}
h[0] = (h[0]+a) |0;
h[1] = (h[1]+b) |0;
h[2] = (h[2]+c) |0;
h[3] = (h[3]+d) |0;
h[4] = (h[4]+e) |0;
}
};
/** @fileOverview CCM mode implementation.
*
* Special thanks to Roy Nicholson for pointing out a bug in our
* implementation.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace CTR mode with CBC MAC. */
sjcl.mode.ccm = {
/** The name of the mode.
* @constant
*/
name: "ccm",
/** Encrypt in CCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=64] the desired tag length, in bits.
* @return {bitArray} The encrypted data, an array of bytes.
*/
encrypt: function(prf, plaintext, iv, adata, tlen) {
var L, i, out = plaintext.slice(0), tag, w=sjcl.bitArray, ivl = w.bitLength(iv) / 8, ol = w.bitLength(out) / 8;
tlen = tlen || 64;
adata = adata || [];
if (ivl < 7) {
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
}
// compute the length of the length
for (L=2; L<4 && ol >>> 8*L; L++) {}
if (L < 15 - ivl) { L = 15-ivl; }
iv = w.clamp(iv,8*(15-L));
// compute the tag
tag = sjcl.mode.ccm._computeTag(prf, plaintext, iv, adata, tlen, L);
// encrypt
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
return w.concat(out.data, out.tag);
},
/** Decrypt in CCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} ciphertext The ciphertext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [[]] adata The authenticated data.
* @param {Number} [64] tlen the desired tag length, in bits.
* @return {bitArray} The decrypted data.
*/
decrypt: function(prf, ciphertext, iv, adata, tlen) {
tlen = tlen || 64;
adata = adata || [];
var L, i,
w=sjcl.bitArray,
ivl = w.bitLength(iv) / 8,
ol = w.bitLength(ciphertext),
out = w.clamp(ciphertext, ol - tlen),
tag = w.bitSlice(ciphertext, ol - tlen), tag2;
ol = (ol - tlen) / 8;
if (ivl < 7) {
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
}
// compute the length of the length
for (L=2; L<4 && ol >>> 8*L; L++) {}
if (L < 15 - ivl) { L = 15-ivl; }
iv = w.clamp(iv,8*(15-L));
// decrypt
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
// check the tag
tag2 = sjcl.mode.ccm._computeTag(prf, out.data, iv, adata, tlen, L);
if (!w.equal(out.tag, tag2)) {
throw new sjcl.exception.corrupt("ccm: tag doesn't match");
}
return out.data;
},
/* Compute the (unencrypted) authentication tag, according to the CCM specification
* @param {Object} prf The pseudorandom function.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} adata The authenticated data.
* @param {Number} tlen the desired tag length, in bits.
* @return {bitArray} The tag, but not yet encrypted.
* @private
*/
_computeTag: function(prf, plaintext, iv, adata, tlen, L) {
// compute B[0]
var q, mac, field = 0, offset = 24, tmp, i, macData = [], w=sjcl.bitArray, xor = w._xor4;
tlen /= 8;
// check tag length and message length
if (tlen % 2 || tlen < 4 || tlen > 16) {
throw new sjcl.exception.invalid("ccm: invalid tag length");
}
if (adata.length > 0xFFFFFFFF || plaintext.length > 0xFFFFFFFF) {
// I don't want to deal with extracting high words from doubles.
throw new sjcl.exception.bug("ccm: can't deal with 4GiB or more data");
}
// mac the flags
mac = [w.partial(8, (adata.length ? 1<<6 : 0) | (tlen-2) << 2 | L-1)];
// mac the iv and length
mac = w.concat(mac, iv);
mac[3] |= w.bitLength(plaintext)/8;
mac = prf.encrypt(mac);
if (adata.length) {
// mac the associated data. start with its length...
tmp = w.bitLength(adata)/8;
if (tmp <= 0xFEFF) {
macData = [w.partial(16, tmp)];
} else if (tmp <= 0xFFFFFFFF) {
macData = w.concat([w.partial(16,0xFFFE)], [tmp]);
} // else ...
// mac the data itself
macData = w.concat(macData, adata);
for (i=0; i bs) {
key = Hash.hash(key);
}
for (i=0; i
* This random number generator is a derivative of Ferguson and Schneier's
* generator Fortuna. It collects entropy from various events into several
* pools, implemented by streaming SHA-256 instances. It differs from
* ordinary Fortuna in a few ways, though.
*
*
*
* Most importantly, it has an entropy estimator. This is present because
* there is a strong conflict here between making the generator available
* as soon as possible, and making sure that it doesn't "run on empty".
* In Fortuna, there is a saved state file, and the system is likely to have
* time to warm up.
*
*
*
* Second, because users are unlikely to stay on the page for very long,
* and to speed startup time, the number of pools increases logarithmically:
* a new pool is created when the previous one is actually used for a reseed.
* This gives the same asymptotic guarantees as Fortuna, but gives more
* entropy to early reseeds.
*
*
*
* The entire mechanism here feels pretty klunky. Furthermore, there are
* several improvements that should be made, including support for
* dedicated cryptographic functions that may be present in some browsers;
* state files in local storage; cookies containing randomness; etc. So
* look for improvements in future versions.
*
*/
sjcl.prng = function(defaultParanoia) {
/* private */
this._pools = [new sjcl.hash.sha256()];
this._poolEntropy = [0];
this._reseedCount = 0;
this._robins = {};
this._eventId = 0;
this._collectorIds = {};
this._collectorIdNext = 0;
this._strength = 0;
this._poolStrength = 0;
this._nextReseed = 0;
this._key = [0,0,0,0,0,0,0,0];
this._counter = [0,0,0,0];
this._cipher = undefined;
this._defaultParanoia = defaultParanoia;
/* event listener stuff */
this._collectorsStarted = false;
this._callbacks = {progress: {}, seeded: {}};
this._callbackI = 0;
/* constants */
this._NOT_READY = 0;
this._READY = 1;
this._REQUIRES_RESEED = 2;
this._MAX_WORDS_PER_BURST = 65536;
this._PARANOIA_LEVELS = [0,48,64,96,128,192,256,384,512,768,1024];
this._MILLISECONDS_PER_RESEED = 30000;
this._BITS_PER_RESEED = 80;
}
sjcl.prng.prototype = {
/** Generate several random words, and return them in an array
* @param {Number} nwords The number of words to generate.
*/
randomWords: function (nwords, paranoia) {
var out = [], i, readiness = this.isReady(paranoia), g;
if (readiness === this._NOT_READY) {
throw new sjcl.exception.notReady("generator isn't seeded");
} else if (readiness & this._REQUIRES_RESEED) {
this._reseedFromPools(!(readiness & this._READY));
}
for (i=0; i0) {
estimatedEntropy++;
tmp = tmp >>> 1;
}
}
}
this._pools[robin].update([id,this._eventId++,2,estimatedEntropy,t,data.length].concat(data));
}
break;
case "string":
if (estimatedEntropy === undefined) {
/* English text has just over 1 bit per character of entropy.
* But this might be HTML or something, and have far less
* entropy than English... Oh well, let's just say one bit.
*/
estimatedEntropy = data.length;
}
this._pools[robin].update([id,this._eventId++,3,estimatedEntropy,t,data.length]);
this._pools[robin].update(data);
break;
default:
err=1;
}
if (err) {
throw new sjcl.exception.bug("random: addEntropy only supports number, array of numbers or string");
}
/* record the new strength */
this._poolEntropy[robin] += estimatedEntropy;
this._poolStrength += estimatedEntropy;
/* fire off events */
if (oldReady === this._NOT_READY) {
if (this.isReady() !== this._NOT_READY) {
this._fireEvent("seeded", Math.max(this._strength, this._poolStrength));
}
this._fireEvent("progress", this.getProgress());
}
},
/** Is the generator ready? */
isReady: function (paranoia) {
var entropyRequired = this._PARANOIA_LEVELS[ (paranoia !== undefined) ? paranoia : this._defaultParanoia ];
if (this._strength && this._strength >= entropyRequired) {
return (this._poolEntropy[0] > this._BITS_PER_RESEED && (new Date()).valueOf() > this._nextReseed) ?
this._REQUIRES_RESEED | this._READY :
this._READY;
} else {
return (this._poolStrength >= entropyRequired) ?
this._REQUIRES_RESEED | this._NOT_READY :
this._NOT_READY;
}
},
/** Get the generator's progress toward readiness, as a fraction */
getProgress: function (paranoia) {
var entropyRequired = this._PARANOIA_LEVELS[ paranoia ? paranoia : this._defaultParanoia ];
if (this._strength >= entropyRequired) {
return 1.0;
} else {
return (this._poolStrength > entropyRequired) ?
1.0 :
this._poolStrength / entropyRequired;
}
},
/** start the built-in entropy collectors */
startCollectors: function () {
if (this._collectorsStarted) { return; }
if (window.addEventListener) {
window.addEventListener("load", this._loadTimeCollector, false);
window.addEventListener("mousemove", this._mouseCollector, false);
} else if (document.attachEvent) {
document.attachEvent("onload", this._loadTimeCollector);
document.attachEvent("onmousemove", this._mouseCollector);
}
else {
throw new sjcl.exception.bug("can't attach event");
}
this._collectorsStarted = true;
},
/** stop the built-in entropy collectors */
stopCollectors: function () {
if (!this._collectorsStarted) { return; }
if (window.removeEventListener) {
window.removeEventListener("load", this._loadTimeCollector, false);
window.removeEventListener("mousemove", this._mouseCollector, false);
} else if (window.detachEvent) {
window.detachEvent("onload", this._loadTimeCollector);
window.detachEvent("onmousemove", this._mouseCollector);
}
this._collectorsStarted = false;
},
/* use a cookie to store entropy.
useCookie: function (all_cookies) {
throw new sjcl.exception.bug("random: useCookie is unimplemented");
},*/
/** add an event listener for progress or seeded-ness. */
addEventListener: function (name, callback) {
this._callbacks[name][this._callbackI++] = callback;
},
/** remove an event listener for progress or seeded-ness */
removeEventListener: function (name, cb) {
var i, j, cbs=this._callbacks[name], jsTemp=[];
/* I'm not sure if this is necessary; in C++, iterating over a
* collection and modifying it at the same time is a no-no.
*/
for (j in cbs) {
if (cbs.hasOwnProperty(j) && cbs[j] === cb) {
jsTemp.push(j);
}
}
for (i=0; i= 1 << this._pools.length) {
this._pools.push(new sjcl.hash.sha256());
this._poolEntropy.push(0);
}
/* how strong was this reseed? */
this._poolStrength -= strength;
if (strength > this._strength) {
this._strength = strength;
}
this._reseedCount ++;
this._reseed(reseedData);
},
_mouseCollector: function (ev) {
var x = ev.x || ev.clientX || ev.offsetX || 0, y = ev.y || ev.clientY || ev.offsetY || 0;
sjcl.random.addEntropy([x,y], 2, "mouse");
},
_loadTimeCollector: function (ev) {
sjcl.random.addEntropy((new Date()).valueOf(), 2, "loadtime");
},
_fireEvent: function (name, arg) {
var j, cbs=sjcl.random._callbacks[name], cbsTemp=[];
/* TODO: there is a race condition between removing collectors and firing them */
/* I'm not sure if this is necessary; in C++, iterating over a
* collection and modifying it at the same time is a no-no.
*/
for (j in cbs) {
if (cbs.hasOwnProperty(j)) {
cbsTemp.push(cbs[j]);
}
}
for (j=0; j 4)) {
throw new sjcl.exception.invalid("json encrypt: invalid parameters");
}
if (typeof password === "string") {
tmp = sjcl.misc.cachedPbkdf2(password, p);
password = tmp.key.slice(0,p.ks/32);
p.salt = tmp.salt;
} else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.publicKey) {
tmp = password.kem();
p.kemtag = tmp.tag;
password = tmp.key.slice(0,p.ks/32);
}
if (typeof plaintext === "string") {
plaintext = sjcl.codec.utf8String.toBits(plaintext);
}
if (typeof adata === "string") {
adata = sjcl.codec.utf8String.toBits(adata);
}
prp = new sjcl.cipher[p.cipher](password);
/* return the json data */
j._add(rp, p);
rp.key = password;
/* do the encryption */
p.ct = sjcl.mode[p.mode].encrypt(prp, plaintext, p.iv, adata, p.ts);
//return j.encode(j._subtract(p, j.defaults));
return j.encode(p);
},
/** Simple decryption function.
* @param {String|bitArray} password The password or key.
* @param {String} ciphertext The ciphertext to decrypt.
* @param {Object} [params] Additional non-default parameters.
* @param {Object} [rp] A returned object with filled parameters.
* @return {String} The plaintext.
* @throws {sjcl.exception.invalid} if a parameter is invalid.
* @throws {sjcl.exception.corrupt} if the ciphertext is corrupt.
*/
decrypt: function (password, ciphertext, params, rp) {
params = params || {};
rp = rp || {};
var j = sjcl.json, p = j._add(j._add(j._add({},j.defaults),j.decode(ciphertext)), params, true), ct, tmp, prp, adata=p.adata;
if (typeof p.salt === "string") {
p.salt = sjcl.codec.base64.toBits(p.salt);
}
if (typeof p.iv === "string") {
p.iv = sjcl.codec.base64.toBits(p.iv);
}
if (!sjcl.mode[p.mode] ||
!sjcl.cipher[p.cipher] ||
(typeof password === "string" && p.iter <= 100) ||
(p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
(p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
(!p.iv) ||
(p.iv.length < 2 || p.iv.length > 4)) {
throw new sjcl.exception.invalid("json decrypt: invalid parameters");
}
if (typeof password === "string") {
tmp = sjcl.misc.cachedPbkdf2(password, p);
password = tmp.key.slice(0,p.ks/32);
p.salt = tmp.salt;
} else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.secretKey) {
password = password.unkem(sjcl.codec.base64.toBits(p.kemtag)).slice(0,p.ks/32);
}
if (typeof adata === "string") {
adata = sjcl.codec.utf8String.toBits(adata);
}
prp = new sjcl.cipher[p.cipher](password);
/* do the decryption */
ct = sjcl.mode[p.mode].decrypt(prp, p.ct, p.iv, adata, p.ts);
/* return the json data */
j._add(rp, p);
rp.key = password;
return sjcl.codec.utf8String.fromBits(ct);
},
/** Encode a flat structure into a JSON string.
* @param {Object} obj The structure to encode.
* @return {String} A JSON string.
* @throws {sjcl.exception.invalid} if obj has a non-alphanumeric property.
* @throws {sjcl.exception.bug} if a parameter has an unsupported type.
*/
encode: function (obj) {
var i, out='{', comma='';
for (i in obj) {
if (obj.hasOwnProperty(i)) {
if (!i.match(/^[a-z0-9]+$/i)) {
throw new sjcl.exception.invalid("json encode: invalid property name");
}
out += comma + '"' + i + '":';
comma = ',';
switch (typeof obj[i]) {
case 'number':
case 'boolean':
out += obj[i];
break;
case 'string':
out += '"' + escape(obj[i]) + '"';
break;
case 'object':
out += '"' + sjcl.codec.base64.fromBits(obj[i],0) + '"';
break;
default:
throw new sjcl.exception.bug("json encode: unsupported type");
}
}
}
return out+'}';
},
/** Decode a simple (flat) JSON string into a structure. The ciphertext,
* adata, salt and iv will be base64-decoded.
* @param {String} str The string.
* @return {Object} The decoded structure.
* @throws {sjcl.exception.invalid} if str isn't (simple) JSON.
*/
decode: function (str) {
str = str.replace(/\s/g,'');
if (!str.match(/^\{.*\}$/)) {
throw new sjcl.exception.invalid("json decode: this isn't json!");
}
var a = str.replace(/^\{|\}$/g, '').split(/,/), out={}, i, m;
for (i=0; i= this.limbs.length) ? 0 : this.limbs[i];
},
/**
* Constant time comparison function.
* Returns 1 if this >= that, or zero otherwise.
*/
greaterEquals: function(that) {
if (typeof that === "number") { that = new this._class(that); }
var less = 0, greater = 0, i, a, b;
i = Math.max(this.limbs.length, that.limbs.length) - 1;
for (; i>= 0; i--) {
a = this.getLimb(i);
b = that.getLimb(i);
greater |= (b - a) & ~less;
less |= (a - b) & ~greater;
}
return (greater | ~less) >>> 31;
},
/**
* Convert to a hex string.
*/
toString: function() {
this.fullReduce();
var out="", i, s, l = this.limbs;
for (i=0; i < this.limbs.length; i++) {
s = l[i].toString(16);
while (i < this.limbs.length - 1 && s.length < 6) {
s = "0" + s;
}
out = s + out;
}
return "0x"+out;
},
/** this += that. Does not normalize. */
addM: function(that) {
if (typeof(that) !== "object") { that = new this._class(that); }
var i, l=this.limbs, ll=that.limbs;
for (i=l.length; i> r;
}
if (carry) {
l.push(carry);
}
return this;
},
/** this /= 2, rounded down. Requires normalized; ends up normalized. */
halveM: function() {
var i, carry=0, tmp, r=this.radix, l=this.limbs;
for (i=l.length-1; i>=0; i--) {
tmp = l[i];
l[i] = (tmp+carry)>>1;
carry = (tmp&1) << r;
}
if (!l[l.length-1]) {
l.pop();
}
return this;
},
/** this -= that. Does not normalize. */
subM: function(that) {
if (typeof(that) !== "object") { that = new this._class(that); }
var i, l=this.limbs, ll=that.limbs;
for (i=l.length; i 0; ci--) {
that.halveM();
if (out.greaterEquals(that)) {
out.subM(that).normalize();
}
}
return out.trim();
},
/** return inverse mod prime p. p must be odd. Binary extended Euclidean algorithm mod p. */
inverseMod: function(p) {
var a = new sjcl.bn(1), b = new sjcl.bn(0), x = new sjcl.bn(this), y = new sjcl.bn(p), tmp, i, nz=1;
if (!(p.limbs[0] & 1)) {
throw (new sjcl.exception.invalid("inverseMod: p must be odd"));
}
// invariant: y is odd
do {
if (x.limbs[0] & 1) {
if (!x.greaterEquals(y)) {
// x < y; swap everything
tmp = x; x = y; y = tmp;
tmp = a; a = b; b = tmp;
}
x.subM(y);
x.normalize();
if (!a.greaterEquals(b)) {
a.addM(p);
}
a.subM(b);
}
// cut everything in half
x.halveM();
if (a.limbs[0] & 1) {
a.addM(p);
}
a.normalize();
a.halveM();
// check for termination: x ?= 0
for (i=nz=0; i= 0; i--) {
out = w.concat(out, [w.partial(Math.min(this.radix,len), this.getLimb(i))]);
len -= this.radix;
}
return out;
},
/** Return the length in bits, rounded up to the nearest byte. */
bitLength: function() {
this.fullReduce();
var out = this.radix * (this.limbs.length - 1),
b = this.limbs[this.limbs.length - 1];
for (; b; b >>>= 1) {
out ++;
}
return out+7 & -8;
}
};
/** @this { sjcl.bn } */
sjcl.bn.fromBits = function(bits) {
var Class = this, out = new Class(), words=[], w=sjcl.bitArray, t = this.prototype,
l = Math.min(this.bitLength || 0x100000000, w.bitLength(bits)), e = l % t.radix || t.radix;
words[0] = w.extract(bits, 0, e);
for (; e < l; e += t.radix) {
words.unshift(w.extract(bits, e, t.radix));
}
out.limbs = words;
return out;
};
sjcl.bn.prototype.ipv = 1 / (sjcl.bn.prototype.placeVal = Math.pow(2,sjcl.bn.prototype.radix));
sjcl.bn.prototype.radixMask = (1 << sjcl.bn.prototype.radix) - 1;
/**
* Creates a new subclass of bn, based on reduction modulo a pseudo-Mersenne prime,
* i.e. a prime of the form 2^e + sum(a * 2^b),where the sum is negative and sparse.
*/
sjcl.bn.pseudoMersennePrime = function(exponent, coeff) {
/** @constructor */
function p(it) {
this.initWith(it);
/*if (this.limbs[this.modOffset]) {
this.reduce();
}*/
}
var ppr = p.prototype = new sjcl.bn(), i, tmp, mo;
mo = ppr.modOffset = Math.ceil(tmp = exponent / ppr.radix);
ppr.exponent = exponent;
ppr.offset = [];
ppr.factor = [];
ppr.minOffset = mo;
ppr.fullMask = 0;
ppr.fullOffset = [];
ppr.fullFactor = [];
ppr.modulus = p.modulus = new sjcl.bn(Math.pow(2,exponent));
ppr.fullMask = 0|-Math.pow(2, exponent % ppr.radix);
for (i=0; i mo) {
l = limbs.pop();
ll = limbs.length;
for (k=0; k=0; i--) {
for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
out = out.doubl().doubl().doubl().doubl().add(multiples[k[i]>>j & 0xF]);
}
}
return out;
},
/**
* Multiply this point by k, added to affine2*k2, and return the answer in Jacobian coordinates.
* @param {bigInt} k The coefficient to multiply this by.
* @param {sjcl.ecc.point} affine This point in affine coordinates.
* @param {bigInt} k2 The coefficient to multiply affine2 this by.
* @param {sjcl.ecc.point} affine The other point in affine coordinates.
* @return {sjcl.ecc.pointJac} The result of the multiplication and addition, in Jacobian coordinates.
*/
mult2: function(k1, affine, k2, affine2) {
if (typeof(k1) === "number") {
k1 = [k1];
} else if (k1.limbs !== undefined) {
k1 = k1.normalize().limbs;
}
if (typeof(k2) === "number") {
k2 = [k2];
} else if (k2.limbs !== undefined) {
k2 = k2.normalize().limbs;
}
var i, j, out = new sjcl.ecc.point(this.curve).toJac(), m1 = affine.multiples(),
m2 = affine2.multiples(), l1, l2;
for (i=Math.max(k1.length,k2.length)-1; i>=0; i--) {
l1 = k1[i] | 0;
l2 = k2[i] | 0;
for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
out = out.doubl().doubl().doubl().doubl().add(m1[l1>>j & 0xF]).add(m2[l2>>j & 0xF]);
}
}
return out;
},
isValid: function() {
var z2 = this.z.square(), z4 = z2.square(), z6 = z4.mul(z2);
return this.y.square().equals(
this.curve.b.mul(z6).add(this.x.mul(
this.curve.a.mul(z4).add(this.x.square()))));
}
};
/**
* Construct an elliptic curve. Most users will not use this and instead start with one of the NIST curves defined below.
*
* @constructor
* @param {bigInt} p The prime modulus.
* @param {bigInt} r The prime order of the curve.
* @param {bigInt} a The constant a in the equation of the curve y^2 = x^3 + ax + b (for NIST curves, a is always -3).
* @param {bigInt} x The x coordinate of a base point of the curve.
* @param {bigInt} y The y coordinate of a base point of the curve.
*/
sjcl.ecc.curve = function(Field, r, a, b, x, y) {
this.field = Field;
this.r = Field.prototype.modulus.sub(r);
this.a = new Field(a);
this.b = new Field(b);
this.G = new sjcl.ecc.point(this, new Field(x), new Field(y));
};
sjcl.ecc.curve.prototype.fromBits = function (bits) {
var w = sjcl.bitArray, l = this.field.prototype.exponent + 7 & -8,
p = new sjcl.ecc.point(this, this.field.fromBits(w.bitSlice(bits, 0, l)),
this.field.fromBits(w.bitSlice(bits, l, 2*l)));
if (!p.isValid()) {
throw new sjcl.exception.corrupt("not on the curve!");
}
return p;
};
sjcl.ecc.curves = {
c192: new sjcl.ecc.curve(
sjcl.bn.prime.p192,
"0x662107c8eb94364e4b2dd7ce",
-3,
"0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",
"0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",
"0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811"),
c224: new sjcl.ecc.curve(
sjcl.bn.prime.p224,
"0xe95c1f470fc1ec22d6baa3a3d5c4",
-3,
"0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",
"0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
"0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"),
c256: new sjcl.ecc.curve(
sjcl.bn.prime.p256,
"0x4319055358e8617b0c46353d039cdaae",
-3,
"0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
"0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
"0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"),
c384: new sjcl.ecc.curve(
sjcl.bn.prime.p384,
"0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c",
-3,
"0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",
"0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",
"0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f")
};
/* Diffie-Hellman-like public-key system */
sjcl.ecc._dh = function(cn) {
sjcl.ecc[cn] = {
/** @constructor */
publicKey: function(curve, point) {
this._curve = curve;
this._curveBitLength = curve.r.bitLength();
if (point instanceof Array) {
this._point = curve.fromBits(point);
} else {
this._point = point;
}
this.get = function() {
var pointbits = this._point.toBits();
var len = sjcl.bitArray.bitLength(pointbits);
var x = sjcl.bitArray.bitSlice(pointbits, 0, len/2);
var y = sjcl.bitArray.bitSlice(pointbits, len/2);
return { x: x, y: y };
}
},
/** @constructor */
secretKey: function(curve, exponent) {
this._curve = curve;
this._curveBitLength = curve.r.bitLength();
this._exponent = exponent;
this.get = function() {
return this._exponent.toBits();
}
},
/** @constructor */
generateKeys: function(curve, paranoia, sec) {
if (curve === undefined) {
curve = 256;
}
if (typeof curve === "number") {
curve = sjcl.ecc.curves['c'+curve];
if (curve === undefined) {
throw new sjcl.exception.invalid("no such curve");
}
}
if (sec === undefined) {
var sec = sjcl.bn.random(curve.r, paranoia);
}
var pub = curve.G.mult(sec);
return { pub: new sjcl.ecc[cn].publicKey(curve, pub),
sec: new sjcl.ecc[cn].secretKey(curve, sec) };
}
};
};
sjcl.ecc._dh("elGamal");
sjcl.ecc.elGamal.publicKey.prototype = {
kem: function(paranoia) {
var sec = sjcl.bn.random(this._curve.r, paranoia),
tag = this._curve.G.mult(sec).toBits(),
key = sjcl.hash.sha256.hash(this._point.mult(sec).toBits());
return { key: key, tag: tag };
}
};
sjcl.ecc.elGamal.secretKey.prototype = {
unkem: function(tag) {
return sjcl.hash.sha256.hash(this._curve.fromBits(tag).mult(this._exponent).toBits());
},
dh: function(pk) {
return sjcl.hash.sha256.hash(pk._point.mult(this._exponent).toBits());
}
};
sjcl.ecc._dh("ecdsa");
sjcl.ecc.ecdsa.secretKey.prototype = {
sign: function(hash, paranoia, fakeLegacyVersion, fixedKForTesting) {
if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
}
var R = this._curve.r,
l = R.bitLength(),
k = fixedKForTesting || sjcl.bn.random(R.sub(1), paranoia).add(1),
r = this._curve.G.mult(k).x.mod(R),
ss = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)),
s = fakeLegacyVersion ? ss.inverseMod(R).mul(k).mod(R)
: ss.mul(k.inverseMod(R)).mod(R);
return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
}
};
sjcl.ecc.ecdsa.publicKey.prototype = {
verify: function(hash, rs, fakeLegacyVersion) {
if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
}
var w = sjcl.bitArray,
R = this._curve.r,
l = this._curveBitLength,
r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
ss = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)),
s = fakeLegacyVersion ? ss : ss.inverseMod(R),
hG = sjcl.bn.fromBits(hash).mul(s).mod(R),
hA = r.mul(s).mod(R),
r2 = this._curve.G.mult2(hG, hA, this._point).x;
if (r.equals(0) || ss.equals(0) || r.greaterEquals(R) || ss.greaterEquals(R) || !r2.equals(r)) {
if (fakeLegacyVersion === undefined) {
return this.verify(hash, rs, true);
} else {
throw (new sjcl.exception.corrupt("signature didn't check out"));
}
}
return true;
}
};
/** @fileOverview Javascript SRP implementation.
*
* This file contains a partial implementation of the SRP (Secure Remote
* Password) password-authenticated key exchange protocol. Given a user
* identity, salt, and SRP group, it generates the SRP verifier that may
* be sent to a remote server to establish and SRP account.
*
* For more information, see http://srp.stanford.edu/.
*
* @author Quinn Slack
*/
/**
* Compute the SRP verifier from the username, password, salt, and group.
* @class SRP
*/
sjcl.keyexchange.srp = {
/**
* Calculates SRP v, the verifier.
* v = g^x mod N [RFC 5054]
* @param {String} I The username.
* @param {String} P The password.
* @param {Object} s A bitArray of the salt.
* @param {Object} group The SRP group. Use sjcl.keyexchange.srp.knownGroup
to obtain this object.
* @return {Object} A bitArray of SRP v.
*/
makeVerifier: function(I, P, s, group) {
var x;
x = sjcl.keyexchange.srp.makeX(I, P, s);
x = sjcl.bn.fromBits(x);
return group.g.powermod(x, group.N);
},
/**
* Calculates SRP x.
* x = SHA1( | SHA( | ":" | )) [RFC 2945]
* @param {String} I The username.
* @param {String} P The password.
* @param {Object} s A bitArray of the salt.
* @return {Object} A bitArray of SRP x.
*/
makeX: function(I, P, s) {
var inner = sjcl.hash.sha1.hash(I + ':' + P);
return sjcl.hash.sha1.hash(sjcl.bitArray.concat(s, inner));
},
/**
* Returns the known SRP group with the given size (in bits).
* @param {String} i The size of the known SRP group.
* @return {Object} An object with "N" and "g" properties.
*/
knownGroup:function(i) {
if (typeof i !== "string") { i = i.toString(); }
if (!sjcl.keyexchange.srp._didInitKnownGroups) { sjcl.keyexchange.srp._initKnownGroups(); }
return sjcl.keyexchange.srp._knownGroups[i];
},
/**
* Initializes bignum objects for known group parameters.
* @private
*/
_didInitKnownGroups: false,
_initKnownGroups:function() {
var i, size, group;
for (i=0; i < sjcl.keyexchange.srp._knownGroupSizes.length; i++) {
size = sjcl.keyexchange.srp._knownGroupSizes[i].toString();
group = sjcl.keyexchange.srp._knownGroups[size];
group.N = new sjcl.bn(group.N);
group.g = new sjcl.bn(group.g);
}
sjcl.keyexchange.srp._didInitKnownGroups = true;
},
_knownGroupSizes: [1024, 1536, 2048],
_knownGroups: {
1024: {
N: "EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C" +
"9C256576D674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE4" +
"8E495C1D6089DAD15DC7D7B46154D6B6CE8EF4AD69B15D4982559B29" +
"7BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976EAA9A" +
"FD5138FE8376435B9FC61D2FC0EB06E3",
g:2
},
1536: {
N: "9DEF3CAFB939277AB1F12A8617A47BBBDBA51DF499AC4C80BEEEA961" +
"4B19CC4D5F4F5F556E27CBDE51C6A94BE4607A291558903BA0D0F843" +
"80B655BB9A22E8DCDF028A7CEC67F0D08134B1C8B97989149B609E0B" +
"E3BAB63D47548381DBC5B1FC764E3F4B53DD9DA1158BFD3E2B9C8CF5" +
"6EDF019539349627DB2FD53D24B7C48665772E437D6C7F8CE442734A" +
"F7CCB7AE837C264AE3A9BEB87F8A2FE9B8B5292E5A021FFF5E91479E" +
"8CE7A28C2442C6F315180F93499A234DCF76E3FED135F9BB",
g: 2
},
2048: {
N: "AC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC319294" +
"3DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310D" +
"CD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FB" +
"D5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF74" +
"7359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A" +
"436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D" +
"5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E73" +
"03CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB6" +
"94B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F" +
"9E4AFF73",
g: 2
}
}
};
/**
* Check that the point is valid based on the method described in
* SEC 1: Elliptic Curve Cryptography, section 3.2.2.1:
* Elliptic Curve Public Key Validation Primitive
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*
* @returns {Boolean}
*/
sjcl.ecc.point.prototype.isValidPoint = function() {
var self = this;
var field_modulus = self.curve.field.modulus;
if (self.isIdentity) {
return false;
}
// Check that coordinatres are in bounds
// Return false if x < 1 or x > (field_modulus - 1)
if (((new sjcl.bn(1).greaterEquals(self.x)) &&
!self.x.equals(1)) ||
(self.x.greaterEquals(field_modulus.sub(1))) &&
!self.x.equals(1)) {
return false;
}
// Return false if y < 1 or y > (field_modulus - 1)
if (((new sjcl.bn(1).greaterEquals(self.y)) &&
!self.y.equals(1)) ||
(self.y.greaterEquals(field_modulus.sub(1))) &&
!self.y.equals(1)) {
return false;
}
if (!self.isOnCurve()) {
return false;
}
// TODO check to make sure point is a scalar multiple of base_point
return true;
};
/**
* Check that the point is on the curve
*
* @returns {Boolean}
*/
sjcl.ecc.point.prototype.isOnCurve = function() {
var self = this;
var field_order = self.curve.r;
var component_a = self.curve.a;
var component_b = self.curve.b;
var field_modulus = self.curve.field.modulus;
var left_hand_side = self.y.mul(self.y).mod(field_modulus);
var right_hand_side = self.x.mul(self.x).mul(self.x).add(component_a.mul(self.x)).add(component_b).mod(field_modulus);
return left_hand_side.equals(right_hand_side);
};
sjcl.ecc.point.prototype.toString = function() {
return '(' +
this.x.toString() + ', ' +
this.y.toString() +
')';
};
sjcl.ecc.pointJac.prototype.toString = function() {
return '(' +
this.x.toString() + ', ' +
this.y.toString() + ', ' +
this.z.toString() +
')';
};
// ----- for secp256k1 ------
// Overwrite NIST-P256 with secp256k1
sjcl.ecc.curves.c256 = new sjcl.ecc.curve(
sjcl.bn.pseudoMersennePrime(256, [[0,-1],[4,-1],[6,-1],[7,-1],[8,-1],[9,-1],[32,-1]]),
"0x14551231950b75fc4402da1722fc9baee",
0,
7,
"0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
"0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"
);
// Replace point addition and doubling algorithms
// NIST-P256 is a=-3, we need algorithms for a=0
sjcl.ecc.pointJac.prototype.add = function(T) {
var S = this;
if (S.curve !== T.curve) {
throw("sjcl.ecc.add(): Points must be on the same curve to add them!");
}
if (S.isIdentity) {
return T.toJac();
} else if (T.isIdentity) {
return S;
}
var z1z1 = S.z.square();
var h = T.x.mul(z1z1).subM(S.x);
var s2 = T.y.mul(S.z).mul(z1z1);
if (h.equals(0)) {
if (S.y.equals(T.y.mul(z1z1.mul(S.z)))) {
// same point
return S.doubl();
} else {
// inverses
return new sjcl.ecc.pointJac(S.curve);
}
}
var hh = h.square();
var i = hh.copy().doubleM().doubleM();
var j = h.mul(i);
var r = s2.sub(S.y).doubleM();
var v = S.x.mul(i);
var x = r.square().subM(j).subM(v.copy().doubleM());
var y = r.mul(v.sub(x)).subM(S.y.mul(j).doubleM());
var z = S.z.add(h).square().subM(z1z1).subM(hh);
return new sjcl.ecc.pointJac(this.curve,x,y,z);
};
sjcl.ecc.pointJac.prototype.doubl = function () {
if (this.isIdentity) { return this; }
var a = this.x.square();
var b = this.y.square();
var c = b.square();
var d = this.x.add(b).square().subM(a).subM(c).doubleM();
var e = a.mul(3);
var f = e.square();
var x = f.sub(d.copy().doubleM());
var y = e.mul(d.sub(x)).subM(c.doubleM().doubleM().doubleM());
var z = this.z.mul(this.y).doubleM();
return new sjcl.ecc.pointJac(this.curve, x, y, z);
};
sjcl.ecc.point.prototype.toBytesCompressed = function () {
var header = this.y.mod(2).toString() == "0x0" ? 0x02 : 0x03;
return [header].concat(sjcl.codec.bytes.fromBits(this.x.toBits()))
};
/** @fileOverview Javascript RIPEMD-160 implementation.
*
* @author Artem S Vybornov
*/
(function() {
/**
* Context for a RIPEMD-160 operation in progress.
* @constructor
* @class RIPEMD, 160 bits.
*/
sjcl.hash.ripemd160 = function (hash) {
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 5 big-endian words.
*/
sjcl.hash.ripemd160.hash = function (data) {
return (new sjcl.hash.ripemd160()).update(data).finalize();
};
sjcl.hash.ripemd160.prototype = {
/**
* Reset the hash state.
* @return this
*/
reset: function () {
this._h = _h0.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Reset the hash state.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if ( typeof data === "string" )
data = sjcl.codec.utf8String.toBits(data);
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
for (i = 512+ol & -512; i <= nl; i+= 512) {
var words = b.splice(0,16);
for ( var w = 0; w < 16; ++w )
words[w] = _cvt(words[w]);
_block.call( this, words );
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 5 big-endian words.
*/
finalize: function () {
var b = sjcl.bitArray.concat( this._buffer, [ sjcl.bitArray.partial(1,1) ] ),
l = ( this._length + 1 ) % 512,
z = ( l > 448 ? 512 : 448 ) - l % 448,
zp = z % 32;
if ( zp > 0 )
b = sjcl.bitArray.concat( b, [ sjcl.bitArray.partial(zp,0) ] )
for ( ; z >= 32; z -= 32 )
b.push(0);
b.push( _cvt( this._length | 0 ) );
b.push( _cvt( Math.floor(this._length / 0x100000000) ) );
while ( b.length ) {
var words = b.splice(0,16);
for ( var w = 0; w < 16; ++w )
words[w] = _cvt(words[w]);
_block.call( this, words );
}
var h = this._h;
this.reset();
for ( var w = 0; w < 5; ++w )
h[w] = _cvt(h[w]);
return h;
}
};
var _h0 = [ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ];
var _k1 = [ 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e ];
var _k2 = [ 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000 ];
for ( var i = 4; i >= 0; --i ) {
for ( var j = 1; j < 16; ++j ) {
_k1.splice(i,0,_k1[i]);
_k2.splice(i,0,_k2[i]);
}
}
var _r1 = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 ];
var _r2 = [ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 ];
var _s1 = [ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ];
var _s2 = [ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ];
function _f0(x,y,z) {
return x ^ y ^ z;
};
function _f1(x,y,z) {
return (x & y) | (~x & z);
};
function _f2(x,y,z) {
return (x | ~y) ^ z;
};
function _f3(x,y,z) {
return (x & z) | (y & ~z);
};
function _f4(x,y,z) {
return x ^ (y | ~z);
};
function _rol(n,l) {
return (n << l) | (n >>> (32-l));
}
function _cvt(n) {
return ( (n & 0xff << 0) << 24 )
| ( (n & 0xff << 8) << 8 )
| ( (n & 0xff << 16) >>> 8 )
| ( (n & 0xff << 24) >>> 24 );
}
function _block(X) {
var A1 = this._h[0], B1 = this._h[1], C1 = this._h[2], D1 = this._h[3], E1 = this._h[4],
A2 = this._h[0], B2 = this._h[1], C2 = this._h[2], D2 = this._h[3], E2 = this._h[4];
var j = 0, T;
for ( ; j < 16; ++j ) {
T = _rol( A1 + _f0(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
T = _rol( A2 + _f4(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
for ( ; j < 32; ++j ) {
T = _rol( A1 + _f1(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
T = _rol( A2 + _f3(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
for ( ; j < 48; ++j ) {
T = _rol( A1 + _f2(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
T = _rol( A2 + _f2(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
for ( ; j < 64; ++j ) {
T = _rol( A1 + _f3(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
T = _rol( A2 + _f1(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
for ( ; j < 80; ++j ) {
T = _rol( A1 + _f4(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
T = _rol( A2 + _f0(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
T = this._h[1] + C1 + D2;
this._h[1] = this._h[2] + D1 + E2;
this._h[2] = this._h[3] + E1 + A2;
this._h[3] = this._h[4] + A1 + B2;
this._h[4] = this._h[0] + B1 + C2;
this._h[0] = T;
}
})();
sjcl.bn.ZERO = new sjcl.bn(0);
/** [ this / that , this % that ] */
sjcl.bn.prototype.divRem = function (that) {
if (typeof(that) !== "object") { that = new this._class(that); }
var thisa = this.abs(), thata = that.abs(), quot = new this._class(0),
ci = 0;
if (!thisa.greaterEquals(thata)) {
return [new sjcl.bn(0), this.copy()];
} else if (thisa.equals(thata)) {
return [new sjcl.bn(1), new sjcl.bn(0)];
}
for (; thisa.greaterEquals(thata); ci++) {
thata.doubleM();
}
for (; ci > 0; ci--) {
quot.doubleM();
thata.halveM();
if (thisa.greaterEquals(thata)) {
quot.addM(1);
thisa.subM(that).normalize();
}
}
return [quot, thisa];
};
/** this /= that (rounded to nearest int) */
sjcl.bn.prototype.divRound = function (that) {
var dr = this.divRem(that), quot = dr[0], rem = dr[1];
if (rem.doubleM().greaterEquals(that)) {
quot.addM(1);
}
return quot;
};
/** this /= that (rounded down) */
sjcl.bn.prototype.div = function (that) {
var dr = this.divRem(that);
return dr[0];
};
sjcl.bn.prototype.sign = function () {
return this.greaterEquals(sjcl.bn.ZERO) ? 1 : -1;
};
/** -this */
sjcl.bn.prototype.neg = function () {
return sjcl.bn.ZERO.sub(this);
};
/** |this| */
sjcl.bn.prototype.abs = function () {
if (this.sign() === -1) {
return this.neg();
} else return this;
};
/** this >> that */
sjcl.bn.prototype.shiftRight = function (that) {
if ("number" !== typeof that) {
throw new Error("shiftRight expects a number");
}
that = +that;
if (that < 0) {
return this.shiftLeft(that);
}
var a = new sjcl.bn(this);
while (that >= this.radix) {
a.limbs.shift();
that -= this.radix;
}
while (that--) {
a.halveM();
}
return a;
};
/** this >> that */
sjcl.bn.prototype.shiftLeft = function (that) {
if ("number" !== typeof that) {
throw new Error("shiftLeft expects a number");
}
that = +that;
if (that < 0) {
return this.shiftRight(that);
}
var a = new sjcl.bn(this);
while (that >= this.radix) {
a.limbs.unshift(0);
that -= this.radix;
}
while (that--) {
a.doubleM();
}
return a;
};
/** (int)this */
// NOTE Truncates to 32-bit integer
sjcl.bn.prototype.toNumber = function () {
return this.limbs[0] | 0;
};
/** find n-th bit, 0 = LSB */
sjcl.bn.prototype.testBit = function (bitIndex) {
var limbIndex = Math.floor(bitIndex / this.radix);
var bitIndexInLimb = bitIndex % this.radix;
if (limbIndex >= this.limbs.length) return 0;
return (this.limbs[limbIndex] >>> bitIndexInLimb) & 1;
};
/** set n-th bit, 0 = LSB */
sjcl.bn.prototype.setBitM = function (bitIndex) {
var limbIndex = Math.floor(bitIndex / this.radix);
var bitIndexInLimb = bitIndex % this.radix;
while (limbIndex >= this.limbs.length) this.limbs.push(0);
this.limbs[limbIndex] |= 1 << bitIndexInLimb;
this.cnormalize();
return this;
};
sjcl.bn.prototype.modInt = function (n) {
return this.toNumber() % n;
};
sjcl.bn.prototype.invDigit = function ()
{
var radixMod = 1 + this.radixMask;
if (this.limbs.length < 1) return 0;
var x = this.limbs[0];
if ((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < radixMod <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%radixMod))%radixMod; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?radixMod-y:-y;
};
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// JSBN-style add and multiply for SJCL w/ 24 bit radix
sjcl.bn.prototype.am = function (i,x,w,j,c,n) {
var xl = x&0xfff, xh = x>>12;
while (--n >= 0) {
var l = this.limbs[i]&0xfff;
var h = this.limbs[i++]>>12;
var m = xh*l+h*xl;
l = xl*l+((m&0xfff)<<12)+w.limbs[j]+c;
c = (l>>24)+(m>>12)+xh*h;
w.limbs[j++] = l&0xffffff;
}
return c;
}
var Montgomery = function (m)
{
this.m = m;
this.mt = m.limbs.length;
this.mt2 = this.mt * 2;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1<<(m.radix-15))-1;
};
Montgomery.prototype.reduce = function (x)
{
var radixMod = x.radixMask + 1;
while (x.limbs.length <= this.mt2) // pad x so am has enough room later
x.limbs[x.limbs.length] = 0;
for (var i = 0; i < this.mt; ++i) {
// faster way of calculating u0 = x[i]*mp mod 2^radix
var j = x.limbs[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x.limbs[i]>>15)*this.mpl)&this.um)<<15))&x.radixMask;
// use am to combine the multiply-shift-add into one call
j = i+this.mt;
x.limbs[j] += this.m.am(0,u0,x,i,0,this.mt);
// propagate carry
while (x.limbs[j] >= radixMod) { x.limbs[j] -= radixMod; x.limbs[++j]++; }
}
x.trim();
x = x.shiftRight(this.mt * this.m.radix);
if (x.greaterEquals(this.m)) x = x.sub(this.m);
return x.trim().normalize().reduce();
};
Montgomery.prototype.square = function (x)
{
return this.reduce(x.square());
};
Montgomery.prototype.multiply = function (x, y)
{
return this.reduce(x.mul(y));
};
Montgomery.prototype.convert = function (x)
{
return x.abs().shiftLeft(this.mt * this.m.radix).mod(this.m);
};
Montgomery.prototype.revert = function (x)
{
return this.reduce(x.copy());
};
sjcl.bn.prototype.powermodMontgomery = function (e, m)
{
var i = e.bitLength(), k, r = new this._class(1);
if (i <= 0) return r;
else if (i < 18) k = 1;
else if (i < 48) k = 3;
else if (i < 144) k = 4;
else if (i < 768) k = 5;
else k = 6;
if (i < 8 || !m.testBit(0)) {
// For small exponents and even moduli, use a simple square-and-multiply
// algorithm.
return this.powermod(e, m);
}
var z = new Montgomery(m);
e.trim().normalize();
// precomputation
var g = new Array(), n = 3, k1 = k-1, km = (1< 1) {
var g2 = z.square(g[1]);
while (n <= km) {
g[n] = z.multiply(g2, g[n-2]);
n += 2;
}
}
var j = e.limbs.length-1, w, is1 = true, r2 = new this._class(), t;
i = nbits(e.limbs[j])-1;
while (j >= 0) {
if (i >= k1) w = (e.limbs[j]>>(i-k1))&km;
else {
w = (e.limbs[j]&((1<<(i+1))-1))<<(k1-i);
if (j > 0) w |= e.limbs[j-1]>>(this.radix+i-k1);
}
n = k;
while ((w&1) == 0) { w >>= 1; --n; }
if ((i -= n) < 0) { i += this.radix; --j; }
if (is1) { // ret == 1, don't bother squaring or multiplying it
r = g[w].copy();
is1 = false;
} else {
while (n > 1) { r2 = z.square(r); r = z.square(r2); n -= 2; }
if (n > 0) r2 = z.square(r); else { t = r; r = r2; r2 = t; }
r = z.multiply(r2,g[w]);
}
while (j >= 0 && (e.limbs[j]&(1< 0 && typeof k_for_testing[0] === 'number') {
k = k_for_testing;
} else if (typeof k_for_testing === 'string' && /^[0-9a-fA-F]+$/.test(k_for_testing)) {
k = sjcl.bn.fromBits(sjcl.codec.hex.toBits(k_for_testing));
} else {
// This is the only option that should be used in production
k = sjcl.bn.random(R.sub(1), paranoia).add(1);
}
var r = this._curve.G.mult(k).x.mod(R);
var s = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)).mul(k.inverseMod(R)).mod(R);
return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
};
sjcl.ecc.ecdsa.publicKey.prototype.verify = function(hash, rs) {
var w = sjcl.bitArray,
R = this._curve.r,
l = R.bitLength(),
r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)),
sInv = s.inverseMod(R),
hG = sjcl.bn.fromBits(hash).mul(sInv).mod(R),
hA = r.mul(sInv).mod(R),
r2 = this._curve.G.mult2(hG, hA, this._point).x;
if (r.equals(0) || s.equals(0) || r.greaterEquals(R) || s.greaterEquals(R) || !r2.equals(r)) {
throw (new sjcl.exception.corrupt("signature didn't check out"));
}
return true;
};
sjcl.ecc.ecdsa.secretKey.prototype.canonicalizeSignature = function(rs) {
var w = sjcl.bitArray,
R = this._curve.r,
l = R.bitLength();
var r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l));
// For a canonical signature we want the lower of two possible values for s
// 0 < s <= n/2
if (!R.copy().halveM().greaterEquals(s)) {
s = R.sub(s);
}
return w.concat(r.toBits(l), s.toBits(l));
};
sjcl.ecc.ecdsa.secretKey.prototype.signDER = function(hash, paranoia) {
return this.encodeDER(this.sign(hash, paranoia));
};
sjcl.ecc.ecdsa.secretKey.prototype.encodeDER = function(rs) {
var w = sjcl.bitArray,
R = this._curve.r,
l = R.bitLength();
var rb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,0,l)),
sb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,l,2*l));
// Drop empty leading bytes
while (!rb[0] && rb.length) rb.shift();
while (!sb[0] && sb.length) sb.shift();
// If high bit is set, prepend an extra zero byte (DER signed integer)
if (rb[0] & 0x80) rb.unshift(0);
if (sb[0] & 0x80) sb.unshift(0);
var buffer = [].concat(
0x30,
4 + rb.length + sb.length,
0x02,
rb.length,
rb,
0x02,
sb.length,
sb
);
return sjcl.codec.bytes.toBits(buffer);
};
/**
* This module uses the public key recovery method
* described in SEC 1: Elliptic Curve Cryptography,
* section 4.1.6, "Public Key Recovery Operation".
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*
* Implementation based on:
* https://github.com/bitcoinjs/bitcoinjs-lib/blob/89cf731ac7309b4f98994e3b4b67b7226020181f/src/ecdsa.js
*/
// Defined here so that this value only needs to be calculated once
var FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR;
/**
* Sign the given hash such that the public key, prepending an extra byte
* so that the public key will be recoverable from the signature
*
* @param {bitArray} hash
* @param {Number} paranoia
* @returns {bitArray} Signature formatted as bitArray
*/
sjcl.ecc.ecdsa.secretKey.prototype.signWithRecoverablePublicKey = function(hash, paranoia, k_for_testing) {
var self = this;
// Convert hash to bits and determine encoding for output
var hash_bits;
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
hash_bits = hash;
} else {
throw new sjcl.exception.invalid('hash. Must be a bitArray');
}
// Sign hash with standard, canonicalized method
var standard_signature = self.sign(hash_bits, paranoia, k_for_testing);
var canonical_signature = self.canonicalizeSignature(standard_signature);
// Extract r and s signature components from canonical signature
var r_and_s = getRandSFromSignature(self._curve, canonical_signature);
// Rederive public key
var public_key = self._curve.G.mult(sjcl.bn.fromBits(self.get()));
// Determine recovery factor based on which possible value
// returns the correct public key
var recovery_factor = calculateRecoveryFactor(self._curve, r_and_s.r, r_and_s.s, hash_bits, public_key);
// Prepend recovery_factor to signature and encode in DER
// The value_to_prepend should be 4 bytes total
var value_to_prepend = recovery_factor + 27;
var final_signature_bits = sjcl.bitArray.concat([value_to_prepend], canonical_signature);
// Return value in bits
return final_signature_bits;
};
/**
* Recover the public key from a signature created with the
* signWithRecoverablePublicKey method in this module
*
* @static
*
* @param {bitArray} hash
* @param {bitArray} signature
* @param {sjcl.ecc.curve} [sjcl.ecc.curves['c256']] curve
* @returns {sjcl.ecc.ecdsa.publicKey} Public key
*/
sjcl.ecc.ecdsa.publicKey.recoverFromSignature = function(hash, signature, curve) {
if (!signature || signature instanceof sjcl.ecc.curve) {
throw new sjcl.exception.invalid('must supply hash and signature to recover public key');
}
if (!curve) {
curve = sjcl.ecc.curves['c256'];
}
// Convert hash to bits and determine encoding for output
var hash_bits;
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
hash_bits = hash;
} else {
throw new sjcl.exception.invalid('hash. Must be a bitArray');
}
var signature_bits;
if (typeof signature === 'object' && signature.length > 0 && typeof signature[0] === 'number') {
signature_bits = signature;
} else {
throw new sjcl.exception.invalid('signature. Must be a bitArray');
}
// Extract recovery_factor from first 4 bytes
var recovery_factor = signature_bits[0] - 27;
if (recovery_factor < 0 || recovery_factor > 3) {
throw new sjcl.exception.invalid('signature. Signature must be generated with algorithm ' +
'that prepends the recovery factor in order to recover the public key');
}
// Separate r and s values
var r_and_s = getRandSFromSignature(curve, signature_bits.slice(1));
var signature_r = r_and_s.r;
var signature_s = r_and_s.s;
// Recover public key using recovery_factor
var recovered_public_key_point = recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor);
var recovered_public_key = new sjcl.ecc.ecdsa.publicKey(curve, recovered_public_key_point);
return recovered_public_key;
};
/**
* Retrieve the r and s components of a signature
*
* @param {sjcl.ecc.curve} curve
* @param {bitArray} signature
* @returns {Object} Object with 'r' and 's' fields each as an sjcl.bn
*/
function getRandSFromSignature(curve, signature) {
var r_length = curve.r.bitLength();
return {
r: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, 0, r_length)),
s: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, r_length, sjcl.bitArray.bitLength(signature)))
};
};
/**
* Determine the recovery factor by trying all four
* possibilities and figuring out which results in the
* correct public key
*
* @param {sjcl.ecc.curve} curve
* @param {sjcl.bn} r
* @param {sjcl.bn} s
* @param {bitArray} hash_bits
* @param {sjcl.ecc.point} original_public_key_point
* @returns {Number, 0-3} Recovery factor
*/
function calculateRecoveryFactor(curve, r, s, hash_bits, original_public_key_point) {
var original_public_key_point_bits = original_public_key_point.toBits();
// TODO: verify that it is possible for the recovery_factor to be 2 or 3,
// we may only need 1 bit because the canonical signature might remove the
// possibility of us needing to "use the second candidate key"
for (var possible_factor = 0; possible_factor < 4; possible_factor++) {
var resulting_public_key_point;
try {
resulting_public_key_point = recoverPublicKeyPointFromSignature(curve, r, s, hash_bits, possible_factor);
} catch (err) {
// console.log(err, err.stack);
continue;
}
if (sjcl.bitArray.equal(resulting_public_key_point.toBits(), original_public_key_point_bits)) {
return possible_factor;
}
}
throw new sjcl.exception.bug('unable to calculate recovery factor from signature');
};
/**
* Recover the public key from the signature.
*
* @param {sjcl.ecc.curve} curve
* @param {sjcl.bn} r
* @param {sjcl.bn} s
* @param {bitArray} hash_bits
* @param {Number, 0-3} recovery_factor
* @returns {sjcl.point} Public key corresponding to signature
*/
function recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor) {
var field_order = curve.r;
var field_modulus = curve.field.modulus;
// Reduce the recovery_factor to the two bits used
recovery_factor = recovery_factor & 3;
// The less significant bit specifies whether the y coordinate
// of the compressed point is even or not.
var compressed_point_y_coord_is_even = recovery_factor & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var use_second_candidate_key = recovery_factor >> 1;
// Calculate (field_order + 1) / 4
if (!FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR) {
FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR = field_modulus.add(1).div(4);
}
// In the paper they write "1. For j from 0 to h do the following..."
// That is not necessary here because we are given the recovery_factor
// step 1.1 Let x = r + jn
// Here "j" is either 0 or 1
var x;
if (use_second_candidate_key) {
x = signature_r.add(field_order);
} else {
x = signature_r;
}
// step 1.2 and 1.3 convert x to an elliptic curve point
// Following formula in section 2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion
var alpha = x.mul(x).mul(x).add(curve.a.mul(x)).add(curve.b).mod(field_modulus);
var beta = alpha.powermodMontgomery(FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR, field_modulus);
// If beta is even but y isn't or
// if beta is odd and y is even
// then subtract beta from the field_modulus
var y;
var beta_is_even = beta.mod(2).equals(0);
if (beta_is_even && !compressed_point_y_coord_is_even ||
!beta_is_even && compressed_point_y_coord_is_even) {
y = beta;
} else {
y = field_modulus.sub(beta);
}
// generated_point_R is the point generated from x and y
var generated_point_R = new sjcl.ecc.point(curve, x, y);
// step 1.4 check that R is valid and R x field_order !== infinity
// TODO: add check for R x field_order === infinity
if (!generated_point_R.isValidPoint()) {
throw new sjcl.exception.corrupt('point R. Not a valid point on the curve. Cannot recover public key');
}
// step 1.5 Compute e from M
var message_e = sjcl.bn.fromBits(hash_bits);
var message_e_neg = new sjcl.bn(0).sub(message_e).mod(field_order);
// step 1.6 Compute Q = r^-1 (sR - eG)
// console.log('r: ', signature_r);
var signature_r_inv = signature_r.inverseMod(field_order);
var public_key_point = generated_point_R.mult2(signature_s, message_e_neg, curve.G).mult(signature_r_inv);
// Validate public key point
if (!public_key_point.isValidPoint()) {
throw new sjcl.exception.corrupt('public_key_point. Not a valid point on the curve. Cannot recover public key');
}
// Verify that this public key matches the signature
if (!verify_raw(curve, message_e, signature_r, signature_s, public_key_point)) {
throw new sjcl.exception.corrupt('cannot recover public key');
}
return public_key_point;
};
/**
* Verify a signature given the raw components
* using method defined in section 4.1.5:
* "Alternative Verifying Operation"
*
* @param {sjcl.ecc.curve} curve
* @param {sjcl.bn} e
* @param {sjcl.bn} r
* @param {sjcl.bn} s
* @param {sjcl.ecc.point} public_key_point
* @returns {Boolean}
*/
function verify_raw(curve, e, r, s, public_key_point) {
var field_order = curve.r;
// Return false if r is out of bounds
if ((new sjcl.bn(1)).greaterEquals(r) || r.greaterEquals(new sjcl.bn(field_order))) {
return false;
}
// Return false if s is out of bounds
if ((new sjcl.bn(1)).greaterEquals(s) || s.greaterEquals(new sjcl.bn(field_order))) {
return false;
}
// Check that r = (u1 + u2)G
// u1 = e x s^-1 (mod field_order)
// u2 = r x s^-1 (mod field_order)
var s_mod_inverse_field_order = s.inverseMod(field_order);
var u1 = e.mul(s_mod_inverse_field_order).mod(field_order);
var u2 = r.mul(s_mod_inverse_field_order).mod(field_order);
var point_computed = curve.G.mult2(u1, u2, public_key_point);
return r.equals(point_computed.x.mod(field_order));
};
sjcl.bn.prototype.jacobi = function (that) {
var a = this;
that = new sjcl.bn(that);
if (that.sign() === -1) return;
// 1. If a = 0 then return(0).
if (a.equals(0)) { return 0; }
// 2. If a = 1 then return(1).
if (a.equals(1)) { return 1; }
var s = 0;
// 3. Write a = 2^e * a1, where a1 is odd.
var e = 0;
while (!a.testBit(e)) e++;
var a1 = a.shiftRight(e);
// 4. If e is even then set s ← 1.
if ((e & 1) === 0) {
s = 1;
} else {
var residue = that.modInt(8);
if (residue === 1 || residue === 7) {
// Otherwise set s ← 1 if n ≡ 1 or 7 (mod 8)
s = 1;
} else if (residue === 3 || residue === 5) {
// Or set s ← −1 if n ≡ 3 or 5 (mod 8).
s = -1;
}
}
// 5. If n ≡ 3 (mod 4) and a1 ≡ 3 (mod 4) then set s ← −s.
if (that.modInt(4) === 3 && a1.modInt(4) === 3) {
s = -s;
}
if (a1.equals(1)) {
return s;
} else {
return s * that.mod(a1).jacobi(a1);
}
};