diff --git a/.gitignore b/.gitignore
index 6b9478d9..43220117 100644
--- a/.gitignore
+++ b/.gitignore
@@ -17,7 +17,7 @@
# Ignore object files.
*.o
-build/ripple*.js
+build/*.js
tags
bin/rippled
Debug/*.*
@@ -51,4 +51,4 @@ test/config.js
npm-debug.log
# Ignore dist folder, build for bower
-dist/
\ No newline at end of file
+dist/
diff --git a/README.md b/README.md
index 433fab8d..65f636c5 100644
--- a/README.md
+++ b/README.md
@@ -78,7 +78,7 @@ remote.connect(function() {
2. `cd` into the repository and install dependencies with `npm install`
-3. `npm test` or `node_modules\.bin\mocha test\*-test.js`
+3. `npm test` or `node_modules/.bin/mocha test/*-test.js`
**Generating code coverage**
diff --git a/build/sjcl.js b/build/sjcl.js
deleted file mode 100644
index 6eb17447..00000000
--- a/build/sjcl.js
+++ /dev/null
@@ -1,4550 +0,0 @@
-/** @fileOverview Javascript cryptography implementation.
- *
- * Crush to remove comments, shorten variable names and
- * generally reduce transmission size.
- *
- * @author Emily Stark
- * @author Mike Hamburg
- * @author Dan Boneh
- */
-
-"use strict";
-/*jslint indent: 2, bitwise: false, nomen: false, plusplus: false, white: false, regexp: false */
-/*global document, window, escape, unescape */
-
-/** @namespace The Stanford Javascript Crypto Library, top-level namespace. */
-var sjcl = {
- /** @namespace Symmetric ciphers. */
- cipher: {},
-
- /** @namespace Hash functions. Right now only SHA256 is implemented. */
- hash: {},
-
- /** @namespace Key exchange functions. Right now only SRP is implemented. */
- keyexchange: {},
-
- /** @namespace Block cipher modes of operation. */
- mode: {},
-
- /** @namespace Miscellaneous. HMAC and PBKDF2. */
- misc: {},
-
- /**
- * @namespace Bit array encoders and decoders.
- *
- * @description
- * The members of this namespace are functions which translate between
- * SJCL's bitArrays and other objects (usually strings). Because it
- * isn't always clear which direction is encoding and which is decoding,
- * the method names are "fromBits" and "toBits".
- */
- codec: {},
-
- /** @namespace Exceptions. */
- exception: {
- /** @constructor Ciphertext is corrupt. */
- corrupt: function(message) {
- this.toString = function() { return "CORRUPT: "+this.message; };
- this.message = message;
- },
-
- /** @constructor Invalid parameter. */
- invalid: function(message) {
- this.toString = function() { return "INVALID: "+this.message; };
- this.message = message;
- },
-
- /** @constructor Bug or missing feature in SJCL. @constructor */
- bug: function(message) {
- this.toString = function() { return "BUG: "+this.message; };
- this.message = message;
- },
-
- /** @constructor Something isn't ready. */
- notReady: function(message) {
- this.toString = function() { return "NOT READY: "+this.message; };
- this.message = message;
- }
- }
-};
-
-if(typeof module != 'undefined' && module.exports){
- module.exports = sjcl;
-}
-
-/** @fileOverview Low-level AES implementation.
- *
- * This file contains a low-level implementation of AES, optimized for
- * size and for efficiency on several browsers. It is based on
- * OpenSSL's aes_core.c, a public-domain implementation by Vincent
- * Rijmen, Antoon Bosselaers and Paulo Barreto.
- *
- * An older version of this implementation is available in the public
- * domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
- * Stanford University 2008-2010 and BSD-licensed for liability
- * reasons.
- *
- * @author Emily Stark
- * @author Mike Hamburg
- * @author Dan Boneh
- */
-
-/**
- * Schedule out an AES key for both encryption and decryption. This
- * is a low-level class. Use a cipher mode to do bulk encryption.
- *
- * @constructor
- * @param {Array} key The key as an array of 4, 6 or 8 words.
- *
- * @class Advanced Encryption Standard (low-level interface)
- */
-sjcl.cipher.aes = function (key) {
- if (!this._tables[0][0][0]) {
- this._precompute();
- }
-
- var i, j, tmp,
- encKey, decKey,
- sbox = this._tables[0][4], decTable = this._tables[1],
- keyLen = key.length, rcon = 1;
-
- if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) {
- throw new sjcl.exception.invalid("invalid aes key size");
- }
-
- this._key = [encKey = key.slice(0), decKey = []];
-
- // schedule encryption keys
- for (i = keyLen; i < 4 * keyLen + 28; i++) {
- tmp = encKey[i-1];
-
- // apply sbox
- if (i%keyLen === 0 || (keyLen === 8 && i%keyLen === 4)) {
- tmp = sbox[tmp>>>24]<<24 ^ sbox[tmp>>16&255]<<16 ^ sbox[tmp>>8&255]<<8 ^ sbox[tmp&255];
-
- // shift rows and add rcon
- if (i%keyLen === 0) {
- tmp = tmp<<8 ^ tmp>>>24 ^ rcon<<24;
- rcon = rcon<<1 ^ (rcon>>7)*283;
- }
- }
-
- encKey[i] = encKey[i-keyLen] ^ tmp;
- }
-
- // schedule decryption keys
- for (j = 0; i; j++, i--) {
- tmp = encKey[j&3 ? i : i - 4];
- if (i<=4 || j<4) {
- decKey[j] = tmp;
- } else {
- decKey[j] = decTable[0][sbox[tmp>>>24 ]] ^
- decTable[1][sbox[tmp>>16 & 255]] ^
- decTable[2][sbox[tmp>>8 & 255]] ^
- decTable[3][sbox[tmp & 255]];
- }
- }
-};
-
-sjcl.cipher.aes.prototype = {
- // public
- /* Something like this might appear here eventually
- name: "AES",
- blockSize: 4,
- keySizes: [4,6,8],
- */
-
- /**
- * Encrypt an array of 4 big-endian words.
- * @param {Array} data The plaintext.
- * @return {Array} The ciphertext.
- */
- encrypt:function (data) { return this._crypt(data,0); },
-
- /**
- * Decrypt an array of 4 big-endian words.
- * @param {Array} data The ciphertext.
- * @return {Array} The plaintext.
- */
- decrypt:function (data) { return this._crypt(data,1); },
-
- /**
- * The expanded S-box and inverse S-box tables. These will be computed
- * on the client so that we don't have to send them down the wire.
- *
- * There are two tables, _tables[0] is for encryption and
- * _tables[1] is for decryption.
- *
- * The first 4 sub-tables are the expanded S-box with MixColumns. The
- * last (_tables[01][4]) is the S-box itself.
- *
- * @private
- */
- _tables: [[[],[],[],[],[]],[[],[],[],[],[]]],
-
- /**
- * Expand the S-box tables.
- *
- * @private
- */
- _precompute: function () {
- var encTable = this._tables[0], decTable = this._tables[1],
- sbox = encTable[4], sboxInv = decTable[4],
- i, x, xInv, d=[], th=[], x2, x4, x8, s, tEnc, tDec;
-
- // Compute double and third tables
- for (i = 0; i < 256; i++) {
- th[( d[i] = i<<1 ^ (i>>7)*283 )^i]=i;
- }
-
- for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) {
- // Compute sbox
- s = xInv ^ xInv<<1 ^ xInv<<2 ^ xInv<<3 ^ xInv<<4;
- s = s>>8 ^ s&255 ^ 99;
- sbox[x] = s;
- sboxInv[s] = x;
-
- // Compute MixColumns
- x8 = d[x4 = d[x2 = d[x]]];
- tDec = x8*0x1010101 ^ x4*0x10001 ^ x2*0x101 ^ x*0x1010100;
- tEnc = d[s]*0x101 ^ s*0x1010100;
-
- for (i = 0; i < 4; i++) {
- encTable[i][x] = tEnc = tEnc<<24 ^ tEnc>>>8;
- decTable[i][s] = tDec = tDec<<24 ^ tDec>>>8;
- }
- }
-
- // Compactify. Considerable speedup on Firefox.
- for (i = 0; i < 5; i++) {
- encTable[i] = encTable[i].slice(0);
- decTable[i] = decTable[i].slice(0);
- }
- },
-
- /**
- * Encryption and decryption core.
- * @param {Array} input Four words to be encrypted or decrypted.
- * @param dir The direction, 0 for encrypt and 1 for decrypt.
- * @return {Array} The four encrypted or decrypted words.
- * @private
- */
- _crypt:function (input, dir) {
- if (input.length !== 4) {
- throw new sjcl.exception.invalid("invalid aes block size");
- }
-
- var key = this._key[dir],
- // state variables a,b,c,d are loaded with pre-whitened data
- a = input[0] ^ key[0],
- b = input[dir ? 3 : 1] ^ key[1],
- c = input[2] ^ key[2],
- d = input[dir ? 1 : 3] ^ key[3],
- a2, b2, c2,
-
- nInnerRounds = key.length/4 - 2,
- i,
- kIndex = 4,
- out = [0,0,0,0],
- table = this._tables[dir],
-
- // load up the tables
- t0 = table[0],
- t1 = table[1],
- t2 = table[2],
- t3 = table[3],
- sbox = table[4];
-
- // Inner rounds. Cribbed from OpenSSL.
- for (i = 0; i < nInnerRounds; i++) {
- a2 = t0[a>>>24] ^ t1[b>>16 & 255] ^ t2[c>>8 & 255] ^ t3[d & 255] ^ key[kIndex];
- b2 = t0[b>>>24] ^ t1[c>>16 & 255] ^ t2[d>>8 & 255] ^ t3[a & 255] ^ key[kIndex + 1];
- c2 = t0[c>>>24] ^ t1[d>>16 & 255] ^ t2[a>>8 & 255] ^ t3[b & 255] ^ key[kIndex + 2];
- d = t0[d>>>24] ^ t1[a>>16 & 255] ^ t2[b>>8 & 255] ^ t3[c & 255] ^ key[kIndex + 3];
- kIndex += 4;
- a=a2; b=b2; c=c2;
- }
-
- // Last round.
- for (i = 0; i < 4; i++) {
- out[dir ? 3&-i : i] =
- sbox[a>>>24 ]<<24 ^
- sbox[b>>16 & 255]<<16 ^
- sbox[c>>8 & 255]<<8 ^
- sbox[d & 255] ^
- key[kIndex++];
- a2=a; a=b; b=c; c=d; d=a2;
- }
-
- return out;
- }
-};
-
-
-/** @fileOverview Arrays of bits, encoded as arrays of Numbers.
- *
- * @author Emily Stark
- * @author Mike Hamburg
- * @author Dan Boneh
- */
-
-/** @namespace Arrays of bits, encoded as arrays of Numbers.
- *
- * @description
- *
- * These objects are the currency accepted by SJCL's crypto functions.
- *
- *
- *
- * Most of our crypto primitives operate on arrays of 4-byte words internally,
- * but many of them can take arguments that are not a multiple of 4 bytes.
- * This library encodes arrays of bits (whose size need not be a multiple of 8
- * bits) as arrays of 32-bit words. The bits are packed, big-endian, into an
- * array of words, 32 bits at a time. Since the words are double-precision
- * floating point numbers, they fit some extra data. We use this (in a private,
- * possibly-changing manner) to encode the number of bits actually present
- * in the last word of the array.
- *
- *
- *
- * Because bitwise ops clear this out-of-band data, these arrays can be passed
- * to ciphers like AES which want arrays of words.
- *
- */
-sjcl.bitArray = {
- /**
- * Array slices in units of bits.
- * @param {bitArray} a The array to slice.
- * @param {Number} bstart The offset to the start of the slice, in bits.
- * @param {Number} bend The offset to the end of the slice, in bits. If this is undefined,
- * slice until the end of the array.
- * @return {bitArray} The requested slice.
- */
- bitSlice: function (a, bstart, bend) {
- a = sjcl.bitArray._shiftRight(a.slice(bstart/32), 32 - (bstart & 31)).slice(1);
- return (bend === undefined) ? a : sjcl.bitArray.clamp(a, bend-bstart);
- },
-
- /**
- * Extract a number packed into a bit array.
- * @param {bitArray} a The array to slice.
- * @param {Number} bstart The offset to the start of the slice, in bits.
- * @param {Number} length The length of the number to extract.
- * @return {Number} The requested slice.
- */
- extract: function(a, bstart, blength) {
- // FIXME: this Math.floor is not necessary at all, but for some reason
- // seems to suppress a bug in the Chromium JIT.
- var x, sh = Math.floor((-bstart-blength) & 31);
- if ((bstart + blength - 1 ^ bstart) & -32) {
- // it crosses a boundary
- x = (a[bstart/32|0] << (32 - sh)) ^ (a[bstart/32+1|0] >>> sh);
- } else {
- // within a single word
- x = a[bstart/32|0] >>> sh;
- }
- return x & ((1< 0 && len) {
- a[l-1] = sjcl.bitArray.partial(len, a[l-1] & 0x80000000 >> (len-1), 1);
- }
- return a;
- },
-
- /**
- * Make a partial word for a bit array.
- * @param {Number} len The number of bits in the word.
- * @param {Number} x The bits.
- * @param {Number} [0] _end Pass 1 if x has already been shifted to the high side.
- * @return {Number} The partial word.
- */
- partial: function (len, x, _end) {
- if (len === 32) { return x; }
- return (_end ? x|0 : x << (32-len)) + len * 0x10000000000;
- },
-
- /**
- * Get the number of bits used by a partial word.
- * @param {Number} x The partial word.
- * @return {Number} The number of bits used by the partial word.
- */
- getPartial: function (x) {
- return Math.round(x/0x10000000000) || 32;
- },
-
- /**
- * Compare two arrays for equality in a predictable amount of time.
- * @param {bitArray} a The first array.
- * @param {bitArray} b The second array.
- * @return {boolean} true if a == b; false otherwise.
- */
- equal: function (a, b) {
- if (sjcl.bitArray.bitLength(a) !== sjcl.bitArray.bitLength(b)) {
- return false;
- }
- var x = 0, i;
- for (i=0; i= 32; shift -= 32) {
- out.push(carry);
- carry = 0;
- }
- if (shift === 0) {
- return out.concat(a);
- }
-
- for (i=0; i>>shift);
- carry = a[i] << (32-shift);
- }
- last2 = a.length ? a[a.length-1] : 0;
- shift2 = sjcl.bitArray.getPartial(last2);
- out.push(sjcl.bitArray.partial(shift+shift2 & 31, (shift + shift2 > 32) ? carry : out.pop(),1));
- return out;
- },
-
- /** xor a block of 4 words together.
- * @private
- */
- _xor4: function(x,y) {
- return [x[0]^y[0],x[1]^y[1],x[2]^y[2],x[3]^y[3]];
- }
-};
-
-/** @fileOverview Bit array codec implementations.
- *
- * @author Emily Stark
- * @author Mike Hamburg
- * @author Dan Boneh
- */
-
-/** @namespace UTF-8 strings */
-sjcl.codec.utf8String = {
- /** Convert from a bitArray to a UTF-8 string. */
- fromBits: function (arr) {
- var out = "", bl = sjcl.bitArray.bitLength(arr), i, tmp;
- for (i=0; i>> 24);
- tmp <<= 8;
- }
- return decodeURIComponent(escape(out));
- },
-
- /** Convert from a UTF-8 string to a bitArray. */
- toBits: function (str) {
- str = unescape(encodeURIComponent(str));
- var out = [], i, tmp=0;
- for (i=0; i>>bits) >>> 26);
- if (bits < 6) {
- ta = arr[i] << (6-bits);
- bits += 26;
- i++;
- } else {
- ta <<= 6;
- bits -= 6;
- }
- }
- while ((out.length & 3) && !_noEquals) { out += "="; }
- return out;
- },
-
- /** Convert from a base64 string to a bitArray */
- toBits: function(str, _url) {
- str = str.replace(/\s|=/g,'');
- var out = [], i, bits=0, c = sjcl.codec.base64._chars, ta=0, x;
- if (_url) c = c.substr(0,62) + '-_';
- for (i=0; i 26) {
- bits -= 26;
- out.push(ta ^ x>>>bits);
- ta = x << (32-bits);
- } else {
- bits += 6;
- ta ^= x << (32-bits);
- }
- }
- if (bits&56) {
- out.push(sjcl.bitArray.partial(bits&56, ta, 1));
- }
- return out;
- }
-};
-
-sjcl.codec.base64url = {
- fromBits: function (arr) { return sjcl.codec.base64.fromBits(arr,1,1); },
- toBits: function (str) { return sjcl.codec.base64.toBits(str,1); }
-};
-
-/** @fileOverview Bit array codec implementations.
- *
- * @author Emily Stark
- * @author Mike Hamburg
- * @author Dan Boneh
- */
-
-/** @namespace Arrays of bytes */
-sjcl.codec.bytes = {
- /** Convert from a bitArray to an array of bytes. */
- fromBits: function (arr) {
- var out = [], bl = sjcl.bitArray.bitLength(arr), i, tmp;
- for (i=0; i>> 24);
- tmp <<= 8;
- }
- return out;
- },
- /** Convert from an array of bytes to a bitArray. */
- toBits: function (bytes) {
- var out = [], i, tmp=0;
- for (i=0; i>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) +
- (b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) +
- w[i&15] + w[(i+9) & 15]) | 0;
- }
-
- tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0;
-
- // shift register
- h7 = h6; h6 = h5; h5 = h4;
- h4 = h3 + tmp | 0;
- h3 = h2; h2 = h1; h1 = h0;
-
- h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0;
- }
-
- h[0] = h[0]+h0 | 0;
- h[1] = h[1]+h1 | 0;
- h[2] = h[2]+h2 | 0;
- h[3] = h[3]+h3 | 0;
- h[4] = h[4]+h4 | 0;
- h[5] = h[5]+h5 | 0;
- h[6] = h[6]+h6 | 0;
- h[7] = h[7]+h7 | 0;
- }
-};
-
-
-
-/** @fileOverview Javascript SHA-512 implementation.
- *
- * This implementation was written for CryptoJS by Jeff Mott and adapted for
- * SJCL by Stefan Thomas.
- *
- * CryptoJS (c) 2009–2012 by Jeff Mott. All rights reserved.
- * Released with New BSD License
- *
- * @author Emily Stark
- * @author Mike Hamburg
- * @author Dan Boneh
- * @author Jeff Mott
- * @author Stefan Thomas
- */
-
-/**
- * Context for a SHA-512 operation in progress.
- * @constructor
- * @class Secure Hash Algorithm, 512 bits.
- */
-sjcl.hash.sha512 = function (hash) {
- if (!this._key[0]) { this._precompute(); }
- if (hash) {
- this._h = hash._h.slice(0);
- this._buffer = hash._buffer.slice(0);
- this._length = hash._length;
- } else {
- this.reset();
- }
-};
-
-/**
- * Hash a string or an array of words.
- * @static
- * @param {bitArray|String} data the data to hash.
- * @return {bitArray} The hash value, an array of 16 big-endian words.
- */
-sjcl.hash.sha512.hash = function (data) {
- return (new sjcl.hash.sha512()).update(data).finalize();
-};
-
-sjcl.hash.sha512.prototype = {
- /**
- * The hash's block size, in bits.
- * @constant
- */
- blockSize: 1024,
-
- /**
- * Reset the hash state.
- * @return this
- */
- reset:function () {
- this._h = this._init.slice(0);
- this._buffer = [];
- this._length = 0;
- return this;
- },
-
- /**
- * Input several words to the hash.
- * @param {bitArray|String} data the data to hash.
- * @return this
- */
- update: function (data) {
- if (typeof data === "string") {
- data = sjcl.codec.utf8String.toBits(data);
- }
- var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
- ol = this._length,
- nl = this._length = ol + sjcl.bitArray.bitLength(data);
- for (i = 1024+ol & -1024; i <= nl; i+= 1024) {
- this._block(b.splice(0,32));
- }
- return this;
- },
-
- /**
- * Complete hashing and output the hash value.
- * @return {bitArray} The hash value, an array of 16 big-endian words.
- */
- finalize:function () {
- var i, b = this._buffer, h = this._h;
-
- // Round out and push the buffer
- b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
-
- // Round out the buffer to a multiple of 32 words, less the 4 length words.
- for (i = b.length + 4; i & 31; i++) {
- b.push(0);
- }
-
- // append the length
- b.push(0);
- b.push(0);
- b.push(Math.floor(this._length / 0x100000000));
- b.push(this._length | 0);
-
- while (b.length) {
- this._block(b.splice(0,32));
- }
-
- this.reset();
- return h;
- },
-
- /**
- * The SHA-512 initialization vector, to be precomputed.
- * @private
- */
- _init:[],
-
- /**
- * Least significant 24 bits of SHA512 initialization values.
- *
- * Javascript only has 53 bits of precision, so we compute the 40 most
- * significant bits and add the remaining 24 bits as constants.
- *
- * @private
- */
- _initr: [ 0xbcc908, 0xcaa73b, 0x94f82b, 0x1d36f1, 0xe682d1, 0x3e6c1f, 0x41bd6b, 0x7e2179 ],
-
- /*
- _init:
- [0x6a09e667, 0xf3bcc908, 0xbb67ae85, 0x84caa73b, 0x3c6ef372, 0xfe94f82b, 0xa54ff53a, 0x5f1d36f1,
- 0x510e527f, 0xade682d1, 0x9b05688c, 0x2b3e6c1f, 0x1f83d9ab, 0xfb41bd6b, 0x5be0cd19, 0x137e2179],
- */
-
- /**
- * The SHA-512 hash key, to be precomputed.
- * @private
- */
- _key:[],
-
- /**
- * Least significant 24 bits of SHA512 key values.
- * @private
- */
- _keyr:
- [0x28ae22, 0xef65cd, 0x4d3b2f, 0x89dbbc, 0x48b538, 0x05d019, 0x194f9b, 0x6d8118,
- 0x030242, 0x706fbe, 0xe4b28c, 0xffb4e2, 0x7b896f, 0x1696b1, 0xc71235, 0x692694,
- 0xf14ad2, 0x4f25e3, 0x8cd5b5, 0xac9c65, 0x2b0275, 0xa6e483, 0x41fbd4, 0x1153b5,
- 0x66dfab, 0xb43210, 0xfb213f, 0xef0ee4, 0xa88fc2, 0x0aa725, 0x03826f, 0x0e6e70,
- 0xd22ffc, 0x26c926, 0xc42aed, 0x95b3df, 0xaf63de, 0x77b2a8, 0xedaee6, 0x82353b,
- 0xf10364, 0x423001, 0xf89791, 0x54be30, 0xef5218, 0x65a910, 0x71202a, 0xbbd1b8,
- 0xd2d0c8, 0x41ab53, 0x8eeb99, 0x9b48a8, 0xc95a63, 0x418acb, 0x63e373, 0xb2b8a3,
- 0xefb2fc, 0x172f60, 0xf0ab72, 0x6439ec, 0x631e28, 0x82bde9, 0xc67915, 0x72532b,
- 0x26619c, 0xc0c207, 0xe0eb1e, 0x6ed178, 0x176fba, 0xc898a6, 0xf90dae, 0x1c471b,
- 0x047d84, 0xc72493, 0xc9bebc, 0x100d4c, 0x3e42b6, 0x657e2a, 0xd6faec, 0x475817],
-
- /*
- _key:
- [0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd, 0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc,
- 0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019, 0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118,
- 0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe, 0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2,
- 0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1, 0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694,
- 0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3, 0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65,
- 0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483, 0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5,
- 0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210, 0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4,
- 0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725, 0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70,
- 0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926, 0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df,
- 0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8, 0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b,
- 0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001, 0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30,
- 0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910, 0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8,
- 0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53, 0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8,
- 0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb, 0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3,
- 0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60, 0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec,
- 0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9, 0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b,
- 0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207, 0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178,
- 0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6, 0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b,
- 0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493, 0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c,
- 0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a, 0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817],
- */
-
- /**
- * Function to precompute _init and _key.
- * @private
- */
- _precompute: function () {
- // XXX: This code is for precomputing the SHA256 constants, change for
- // SHA512 and re-enable.
- var i = 0, prime = 2, factor;
-
- function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
- function frac2(x) { return (x-Math.floor(x)) * 0x10000000000 & 0xff; }
-
- outer: for (; i<80; prime++) {
- for (factor=2; factor*factor <= prime; factor++) {
- if (prime % factor === 0) {
- // not a prime
- continue outer;
- }
- }
-
- if (i<8) {
- this._init[i*2] = frac(Math.pow(prime, 1/2));
- this._init[i*2+1] = (frac2(Math.pow(prime, 1/2)) << 24) | this._initr[i];
- }
- this._key[i*2] = frac(Math.pow(prime, 1/3));
- this._key[i*2+1] = (frac2(Math.pow(prime, 1/3)) << 24) | this._keyr[i];
- i++;
- }
- },
-
- /**
- * Perform one cycle of SHA-512.
- * @param {bitArray} words one block of words.
- * @private
- */
- _block:function (words) {
- var i, wrh, wrl,
- w = words.slice(0),
- h = this._h,
- k = this._key,
- h0h = h[ 0], h0l = h[ 1], h1h = h[ 2], h1l = h[ 3],
- h2h = h[ 4], h2l = h[ 5], h3h = h[ 6], h3l = h[ 7],
- h4h = h[ 8], h4l = h[ 9], h5h = h[10], h5l = h[11],
- h6h = h[12], h6l = h[13], h7h = h[14], h7l = h[15];
-
- // Working variables
- var ah = h0h, al = h0l, bh = h1h, bl = h1l,
- ch = h2h, cl = h2l, dh = h3h, dl = h3l,
- eh = h4h, el = h4l, fh = h5h, fl = h5l,
- gh = h6h, gl = h6l, hh = h7h, hl = h7l;
-
- for (i=0; i<80; i++) {
- // load up the input word for this round
- if (i<16) {
- wrh = w[i * 2];
- wrl = w[i * 2 + 1];
- } else {
- // Gamma0
- var gamma0xh = w[(i-15) * 2];
- var gamma0xl = w[(i-15) * 2 + 1];
- var gamma0h =
- ((gamma0xl << 31) | (gamma0xh >>> 1)) ^
- ((gamma0xl << 24) | (gamma0xh >>> 8)) ^
- (gamma0xh >>> 7);
- var gamma0l =
- ((gamma0xh << 31) | (gamma0xl >>> 1)) ^
- ((gamma0xh << 24) | (gamma0xl >>> 8)) ^
- ((gamma0xh << 25) | (gamma0xl >>> 7));
-
- // Gamma1
- var gamma1xh = w[(i-2) * 2];
- var gamma1xl = w[(i-2) * 2 + 1];
- var gamma1h =
- ((gamma1xl << 13) | (gamma1xh >>> 19)) ^
- ((gamma1xh << 3) | (gamma1xl >>> 29)) ^
- (gamma1xh >>> 6);
- var gamma1l =
- ((gamma1xh << 13) | (gamma1xl >>> 19)) ^
- ((gamma1xl << 3) | (gamma1xh >>> 29)) ^
- ((gamma1xh << 26) | (gamma1xl >>> 6));
-
- // Shortcuts
- var wr7h = w[(i-7) * 2];
- var wr7l = w[(i-7) * 2 + 1];
-
- var wr16h = w[(i-16) * 2];
- var wr16l = w[(i-16) * 2 + 1];
-
- // W(round) = gamma0 + W(round - 7) + gamma1 + W(round - 16)
- wrl = gamma0l + wr7l;
- wrh = gamma0h + wr7h + ((wrl >>> 0) < (gamma0l >>> 0) ? 1 : 0);
- wrl += gamma1l;
- wrh += gamma1h + ((wrl >>> 0) < (gamma1l >>> 0) ? 1 : 0);
- wrl += wr16l;
- wrh += wr16h + ((wrl >>> 0) < (wr16l >>> 0) ? 1 : 0);
- }
-
- w[i*2] = wrh |= 0;
- w[i*2 + 1] = wrl |= 0;
-
- // Ch
- var chh = (eh & fh) ^ (~eh & gh);
- var chl = (el & fl) ^ (~el & gl);
-
- // Maj
- var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch);
- var majl = (al & bl) ^ (al & cl) ^ (bl & cl);
-
- // Sigma0
- var sigma0h = ((al << 4) | (ah >>> 28)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7));
- var sigma0l = ((ah << 4) | (al >>> 28)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7));
-
- // Sigma1
- var sigma1h = ((el << 18) | (eh >>> 14)) ^ ((el << 14) | (eh >>> 18)) ^ ((eh << 23) | (el >>> 9));
- var sigma1l = ((eh << 18) | (el >>> 14)) ^ ((eh << 14) | (el >>> 18)) ^ ((el << 23) | (eh >>> 9));
-
- // K(round)
- var krh = k[i*2];
- var krl = k[i*2+1];
-
- // t1 = h + sigma1 + ch + K(round) + W(round)
- var t1l = hl + sigma1l;
- var t1h = hh + sigma1h + ((t1l >>> 0) < (hl >>> 0) ? 1 : 0);
- t1l += chl;
- t1h += chh + ((t1l >>> 0) < (chl >>> 0) ? 1 : 0);
- t1l += krl;
- t1h += krh + ((t1l >>> 0) < (krl >>> 0) ? 1 : 0);
- t1l += wrl;
- t1h += wrh + ((t1l >>> 0) < (wrl >>> 0) ? 1 : 0);
-
- // t2 = sigma0 + maj
- var t2l = sigma0l + majl;
- var t2h = sigma0h + majh + ((t2l >>> 0) < (sigma0l >>> 0) ? 1 : 0);
-
- // Update working variables
- hh = gh;
- hl = gl;
- gh = fh;
- gl = fl;
- fh = eh;
- fl = el;
- el = (dl + t1l) | 0;
- eh = (dh + t1h + ((el >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
- dh = ch;
- dl = cl;
- ch = bh;
- cl = bl;
- bh = ah;
- bl = al;
- al = (t1l + t2l) | 0;
- ah = (t1h + t2h + ((al >>> 0) < (t1l >>> 0) ? 1 : 0)) | 0;
- }
-
- // Intermediate hash
- h0l = h[1] = (h0l + al) | 0;
- h[0] = (h0h + ah + ((h0l >>> 0) < (al >>> 0) ? 1 : 0)) | 0;
- h1l = h[3] = (h1l + bl) | 0;
- h[2] = (h1h + bh + ((h1l >>> 0) < (bl >>> 0) ? 1 : 0)) | 0;
- h2l = h[5] = (h2l + cl) | 0;
- h[4] = (h2h + ch + ((h2l >>> 0) < (cl >>> 0) ? 1 : 0)) | 0;
- h3l = h[7] = (h3l + dl) | 0;
- h[6] = (h3h + dh + ((h3l >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
- h4l = h[9] = (h4l + el) | 0;
- h[8] = (h4h + eh + ((h4l >>> 0) < (el >>> 0) ? 1 : 0)) | 0;
- h5l = h[11] = (h5l + fl) | 0;
- h[10] = (h5h + fh + ((h5l >>> 0) < (fl >>> 0) ? 1 : 0)) | 0;
- h6l = h[13] = (h6l + gl) | 0;
- h[12] = (h6h + gh + ((h6l >>> 0) < (gl >>> 0) ? 1 : 0)) | 0;
- h7l = h[15] = (h7l + hl) | 0;
- h[14] = (h7h + hh + ((h7l >>> 0) < (hl >>> 0) ? 1 : 0)) | 0;
- }
-};
-
-
-
-/** @fileOverview Javascript SHA-1 implementation.
- *
- * Based on the implementation in RFC 3174, method 1, and on the SJCL
- * SHA-256 implementation.
- *
- * @author Quinn Slack
- */
-
-/**
- * Context for a SHA-1 operation in progress.
- * @constructor
- * @class Secure Hash Algorithm, 160 bits.
- */
-sjcl.hash.sha1 = function (hash) {
- if (hash) {
- this._h = hash._h.slice(0);
- this._buffer = hash._buffer.slice(0);
- this._length = hash._length;
- } else {
- this.reset();
- }
-};
-
-/**
- * Hash a string or an array of words.
- * @static
- * @param {bitArray|String} data the data to hash.
- * @return {bitArray} The hash value, an array of 5 big-endian words.
- */
-sjcl.hash.sha1.hash = function (data) {
- return (new sjcl.hash.sha1()).update(data).finalize();
-};
-
-sjcl.hash.sha1.prototype = {
- /**
- * The hash's block size, in bits.
- * @constant
- */
- blockSize: 512,
-
- /**
- * Reset the hash state.
- * @return this
- */
- reset:function () {
- this._h = this._init.slice(0);
- this._buffer = [];
- this._length = 0;
- return this;
- },
-
- /**
- * Input several words to the hash.
- * @param {bitArray|String} data the data to hash.
- * @return this
- */
- update: function (data) {
- if (typeof data === "string") {
- data = sjcl.codec.utf8String.toBits(data);
- }
- var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
- ol = this._length,
- nl = this._length = ol + sjcl.bitArray.bitLength(data);
- for (i = this.blockSize+ol & -this.blockSize; i <= nl;
- i+= this.blockSize) {
- this._block(b.splice(0,16));
- }
- return this;
- },
-
- /**
- * Complete hashing and output the hash value.
- * @return {bitArray} The hash value, an array of 5 big-endian words. TODO
- */
- finalize:function () {
- var i, b = this._buffer, h = this._h;
-
- // Round out and push the buffer
- b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
- // Round out the buffer to a multiple of 16 words, less the 2 length words.
- for (i = b.length + 2; i & 15; i++) {
- b.push(0);
- }
-
- // append the length
- b.push(Math.floor(this._length / 0x100000000));
- b.push(this._length | 0);
-
- while (b.length) {
- this._block(b.splice(0,16));
- }
-
- this.reset();
- return h;
- },
-
- /**
- * The SHA-1 initialization vector.
- * @private
- */
- _init:[0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0],
-
- /**
- * The SHA-1 hash key.
- * @private
- */
- _key:[0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6],
-
- /**
- * The SHA-1 logical functions f(0), f(1), ..., f(79).
- * @private
- */
- _f:function(t, b, c, d) {
- if (t <= 19) {
- return (b & c) | (~b & d);
- } else if (t <= 39) {
- return b ^ c ^ d;
- } else if (t <= 59) {
- return (b & c) | (b & d) | (c & d);
- } else if (t <= 79) {
- return b ^ c ^ d;
- }
- },
-
- /**
- * Circular left-shift operator.
- * @private
- */
- _S:function(n, x) {
- return (x << n) | (x >>> 32-n);
- },
-
- /**
- * Perform one cycle of SHA-1.
- * @param {bitArray} words one block of words.
- * @private
- */
- _block:function (words) {
- var t, tmp, a, b, c, d, e,
- w = words.slice(0),
- h = this._h,
- k = this._key;
-
- a = h[0]; b = h[1]; c = h[2]; d = h[3]; e = h[4];
-
- for (t=0; t<=79; t++) {
- if (t >= 16) {
- w[t] = this._S(1, w[t-3] ^ w[t-8] ^ w[t-14] ^ w[t-16]);
- }
- tmp = (this._S(5, a) + this._f(t, b, c, d) + e + w[t] +
- this._key[Math.floor(t/20)]) | 0;
- e = d;
- d = c;
- c = this._S(30, b);
- b = a;
- a = tmp;
- }
-
- h[0] = (h[0]+a) |0;
- h[1] = (h[1]+b) |0;
- h[2] = (h[2]+c) |0;
- h[3] = (h[3]+d) |0;
- h[4] = (h[4]+e) |0;
- }
-};
-
-/** @fileOverview CCM mode implementation.
- *
- * Special thanks to Roy Nicholson for pointing out a bug in our
- * implementation.
- *
- * @author Emily Stark
- * @author Mike Hamburg
- * @author Dan Boneh
- */
-
-/** @namespace CTR mode with CBC MAC. */
-sjcl.mode.ccm = {
- /** The name of the mode.
- * @constant
- */
- name: "ccm",
-
- /** Encrypt in CCM mode.
- * @static
- * @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
- * @param {bitArray} plaintext The plaintext data.
- * @param {bitArray} iv The initialization value.
- * @param {bitArray} [adata=[]] The authenticated data.
- * @param {Number} [tlen=64] the desired tag length, in bits.
- * @return {bitArray} The encrypted data, an array of bytes.
- */
- encrypt: function(prf, plaintext, iv, adata, tlen) {
- var L, i, out = plaintext.slice(0), tag, w=sjcl.bitArray, ivl = w.bitLength(iv) / 8, ol = w.bitLength(out) / 8;
- tlen = tlen || 64;
- adata = adata || [];
-
- if (ivl < 7) {
- throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
- }
-
- // compute the length of the length
- for (L=2; L<4 && ol >>> 8*L; L++) {}
- if (L < 15 - ivl) { L = 15-ivl; }
- iv = w.clamp(iv,8*(15-L));
-
- // compute the tag
- tag = sjcl.mode.ccm._computeTag(prf, plaintext, iv, adata, tlen, L);
-
- // encrypt
- out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
-
- return w.concat(out.data, out.tag);
- },
-
- /** Decrypt in CCM mode.
- * @static
- * @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
- * @param {bitArray} ciphertext The ciphertext data.
- * @param {bitArray} iv The initialization value.
- * @param {bitArray} [[]] adata The authenticated data.
- * @param {Number} [64] tlen the desired tag length, in bits.
- * @return {bitArray} The decrypted data.
- */
- decrypt: function(prf, ciphertext, iv, adata, tlen) {
- tlen = tlen || 64;
- adata = adata || [];
- var L, i,
- w=sjcl.bitArray,
- ivl = w.bitLength(iv) / 8,
- ol = w.bitLength(ciphertext),
- out = w.clamp(ciphertext, ol - tlen),
- tag = w.bitSlice(ciphertext, ol - tlen), tag2;
-
-
- ol = (ol - tlen) / 8;
-
- if (ivl < 7) {
- throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
- }
-
- // compute the length of the length
- for (L=2; L<4 && ol >>> 8*L; L++) {}
- if (L < 15 - ivl) { L = 15-ivl; }
- iv = w.clamp(iv,8*(15-L));
-
- // decrypt
- out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
-
- // check the tag
- tag2 = sjcl.mode.ccm._computeTag(prf, out.data, iv, adata, tlen, L);
- if (!w.equal(out.tag, tag2)) {
- throw new sjcl.exception.corrupt("ccm: tag doesn't match");
- }
-
- return out.data;
- },
-
- /* Compute the (unencrypted) authentication tag, according to the CCM specification
- * @param {Object} prf The pseudorandom function.
- * @param {bitArray} plaintext The plaintext data.
- * @param {bitArray} iv The initialization value.
- * @param {bitArray} adata The authenticated data.
- * @param {Number} tlen the desired tag length, in bits.
- * @return {bitArray} The tag, but not yet encrypted.
- * @private
- */
- _computeTag: function(prf, plaintext, iv, adata, tlen, L) {
- // compute B[0]
- var q, mac, field = 0, offset = 24, tmp, i, macData = [], w=sjcl.bitArray, xor = w._xor4;
-
- tlen /= 8;
-
- // check tag length and message length
- if (tlen % 2 || tlen < 4 || tlen > 16) {
- throw new sjcl.exception.invalid("ccm: invalid tag length");
- }
-
- if (adata.length > 0xFFFFFFFF || plaintext.length > 0xFFFFFFFF) {
- // I don't want to deal with extracting high words from doubles.
- throw new sjcl.exception.bug("ccm: can't deal with 4GiB or more data");
- }
-
- // mac the flags
- mac = [w.partial(8, (adata.length ? 1<<6 : 0) | (tlen-2) << 2 | L-1)];
-
- // mac the iv and length
- mac = w.concat(mac, iv);
- mac[3] |= w.bitLength(plaintext)/8;
- mac = prf.encrypt(mac);
-
-
- if (adata.length) {
- // mac the associated data. start with its length...
- tmp = w.bitLength(adata)/8;
- if (tmp <= 0xFEFF) {
- macData = [w.partial(16, tmp)];
- } else if (tmp <= 0xFFFFFFFF) {
- macData = w.concat([w.partial(16,0xFFFE)], [tmp]);
- } // else ...
-
- // mac the data itself
- macData = w.concat(macData, adata);
- for (i=0; i bs) {
- key = Hash.hash(key);
- }
-
- for (i=0; i
- * This random number generator is a derivative of Ferguson and Schneier's
- * generator Fortuna. It collects entropy from various events into several
- * pools, implemented by streaming SHA-256 instances. It differs from
- * ordinary Fortuna in a few ways, though.
- *
- *
- *
- * Most importantly, it has an entropy estimator. This is present because
- * there is a strong conflict here between making the generator available
- * as soon as possible, and making sure that it doesn't "run on empty".
- * In Fortuna, there is a saved state file, and the system is likely to have
- * time to warm up.
- *
- *
- *
- * Second, because users are unlikely to stay on the page for very long,
- * and to speed startup time, the number of pools increases logarithmically:
- * a new pool is created when the previous one is actually used for a reseed.
- * This gives the same asymptotic guarantees as Fortuna, but gives more
- * entropy to early reseeds.
- *
- *
- *
- * The entire mechanism here feels pretty klunky. Furthermore, there are
- * several improvements that should be made, including support for
- * dedicated cryptographic functions that may be present in some browsers;
- * state files in local storage; cookies containing randomness; etc. So
- * look for improvements in future versions.
- *
- */
-sjcl.prng = function(defaultParanoia) {
-
- /* private */
- this._pools = [new sjcl.hash.sha256()];
- this._poolEntropy = [0];
- this._reseedCount = 0;
- this._robins = {};
- this._eventId = 0;
-
- this._collectorIds = {};
- this._collectorIdNext = 0;
-
- this._strength = 0;
- this._poolStrength = 0;
- this._nextReseed = 0;
- this._key = [0,0,0,0,0,0,0,0];
- this._counter = [0,0,0,0];
- this._cipher = undefined;
- this._defaultParanoia = defaultParanoia;
-
- /* event listener stuff */
- this._collectorsStarted = false;
- this._callbacks = {progress: {}, seeded: {}};
- this._callbackI = 0;
-
- /* constants */
- this._NOT_READY = 0;
- this._READY = 1;
- this._REQUIRES_RESEED = 2;
-
- this._MAX_WORDS_PER_BURST = 65536;
- this._PARANOIA_LEVELS = [0,48,64,96,128,192,256,384,512,768,1024];
- this._MILLISECONDS_PER_RESEED = 30000;
- this._BITS_PER_RESEED = 80;
-}
-
-sjcl.prng.prototype = {
- /** Generate several random words, and return them in an array
- * @param {Number} nwords The number of words to generate.
- */
- randomWords: function (nwords, paranoia) {
- var out = [], i, readiness = this.isReady(paranoia), g;
-
- if (readiness === this._NOT_READY) {
- throw new sjcl.exception.notReady("generator isn't seeded");
- } else if (readiness & this._REQUIRES_RESEED) {
- this._reseedFromPools(!(readiness & this._READY));
- }
-
- for (i=0; i0) {
- estimatedEntropy++;
- tmp = tmp >>> 1;
- }
- }
- }
- this._pools[robin].update([id,this._eventId++,2,estimatedEntropy,t,data.length].concat(data));
- }
- break;
-
- case "string":
- if (estimatedEntropy === undefined) {
- /* English text has just over 1 bit per character of entropy.
- * But this might be HTML or something, and have far less
- * entropy than English... Oh well, let's just say one bit.
- */
- estimatedEntropy = data.length;
- }
- this._pools[robin].update([id,this._eventId++,3,estimatedEntropy,t,data.length]);
- this._pools[robin].update(data);
- break;
-
- default:
- err=1;
- }
- if (err) {
- throw new sjcl.exception.bug("random: addEntropy only supports number, array of numbers or string");
- }
-
- /* record the new strength */
- this._poolEntropy[robin] += estimatedEntropy;
- this._poolStrength += estimatedEntropy;
-
- /* fire off events */
- if (oldReady === this._NOT_READY) {
- if (this.isReady() !== this._NOT_READY) {
- this._fireEvent("seeded", Math.max(this._strength, this._poolStrength));
- }
- this._fireEvent("progress", this.getProgress());
- }
- },
-
- /** Is the generator ready? */
- isReady: function (paranoia) {
- var entropyRequired = this._PARANOIA_LEVELS[ (paranoia !== undefined) ? paranoia : this._defaultParanoia ];
-
- if (this._strength && this._strength >= entropyRequired) {
- return (this._poolEntropy[0] > this._BITS_PER_RESEED && (new Date()).valueOf() > this._nextReseed) ?
- this._REQUIRES_RESEED | this._READY :
- this._READY;
- } else {
- return (this._poolStrength >= entropyRequired) ?
- this._REQUIRES_RESEED | this._NOT_READY :
- this._NOT_READY;
- }
- },
-
- /** Get the generator's progress toward readiness, as a fraction */
- getProgress: function (paranoia) {
- var entropyRequired = this._PARANOIA_LEVELS[ paranoia ? paranoia : this._defaultParanoia ];
-
- if (this._strength >= entropyRequired) {
- return 1.0;
- } else {
- return (this._poolStrength > entropyRequired) ?
- 1.0 :
- this._poolStrength / entropyRequired;
- }
- },
-
- /** start the built-in entropy collectors */
- startCollectors: function () {
- if (this._collectorsStarted) { return; }
-
- if (window.addEventListener) {
- window.addEventListener("load", this._loadTimeCollector, false);
- window.addEventListener("mousemove", this._mouseCollector, false);
- } else if (document.attachEvent) {
- document.attachEvent("onload", this._loadTimeCollector);
- document.attachEvent("onmousemove", this._mouseCollector);
- }
- else {
- throw new sjcl.exception.bug("can't attach event");
- }
-
- this._collectorsStarted = true;
- },
-
- /** stop the built-in entropy collectors */
- stopCollectors: function () {
- if (!this._collectorsStarted) { return; }
-
- if (window.removeEventListener) {
- window.removeEventListener("load", this._loadTimeCollector, false);
- window.removeEventListener("mousemove", this._mouseCollector, false);
- } else if (window.detachEvent) {
- window.detachEvent("onload", this._loadTimeCollector);
- window.detachEvent("onmousemove", this._mouseCollector);
- }
- this._collectorsStarted = false;
- },
-
- /* use a cookie to store entropy.
- useCookie: function (all_cookies) {
- throw new sjcl.exception.bug("random: useCookie is unimplemented");
- },*/
-
- /** add an event listener for progress or seeded-ness. */
- addEventListener: function (name, callback) {
- this._callbacks[name][this._callbackI++] = callback;
- },
-
- /** remove an event listener for progress or seeded-ness */
- removeEventListener: function (name, cb) {
- var i, j, cbs=this._callbacks[name], jsTemp=[];
-
- /* I'm not sure if this is necessary; in C++, iterating over a
- * collection and modifying it at the same time is a no-no.
- */
-
- for (j in cbs) {
- if (cbs.hasOwnProperty(j) && cbs[j] === cb) {
- jsTemp.push(j);
- }
- }
-
- for (i=0; i= 1 << this._pools.length) {
- this._pools.push(new sjcl.hash.sha256());
- this._poolEntropy.push(0);
- }
-
- /* how strong was this reseed? */
- this._poolStrength -= strength;
- if (strength > this._strength) {
- this._strength = strength;
- }
-
- this._reseedCount ++;
- this._reseed(reseedData);
- },
-
- _mouseCollector: function (ev) {
- var x = ev.x || ev.clientX || ev.offsetX || 0, y = ev.y || ev.clientY || ev.offsetY || 0;
- sjcl.random.addEntropy([x,y], 2, "mouse");
- },
-
- _loadTimeCollector: function (ev) {
- sjcl.random.addEntropy((new Date()).valueOf(), 2, "loadtime");
- },
-
- _fireEvent: function (name, arg) {
- var j, cbs=sjcl.random._callbacks[name], cbsTemp=[];
- /* TODO: there is a race condition between removing collectors and firing them */
-
- /* I'm not sure if this is necessary; in C++, iterating over a
- * collection and modifying it at the same time is a no-no.
- */
-
- for (j in cbs) {
- if (cbs.hasOwnProperty(j)) {
- cbsTemp.push(cbs[j]);
- }
- }
-
- for (j=0; j 4)) {
- throw new sjcl.exception.invalid("json encrypt: invalid parameters");
- }
-
- if (typeof password === "string") {
- tmp = sjcl.misc.cachedPbkdf2(password, p);
- password = tmp.key.slice(0,p.ks/32);
- p.salt = tmp.salt;
- } else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.publicKey) {
- tmp = password.kem();
- p.kemtag = tmp.tag;
- password = tmp.key.slice(0,p.ks/32);
- }
- if (typeof plaintext === "string") {
- plaintext = sjcl.codec.utf8String.toBits(plaintext);
- }
- if (typeof adata === "string") {
- adata = sjcl.codec.utf8String.toBits(adata);
- }
- prp = new sjcl.cipher[p.cipher](password);
-
- /* return the json data */
- j._add(rp, p);
- rp.key = password;
-
- /* do the encryption */
- p.ct = sjcl.mode[p.mode].encrypt(prp, plaintext, p.iv, adata, p.ts);
-
- //return j.encode(j._subtract(p, j.defaults));
- return j.encode(p);
- },
-
- /** Simple decryption function.
- * @param {String|bitArray} password The password or key.
- * @param {String} ciphertext The ciphertext to decrypt.
- * @param {Object} [params] Additional non-default parameters.
- * @param {Object} [rp] A returned object with filled parameters.
- * @return {String} The plaintext.
- * @throws {sjcl.exception.invalid} if a parameter is invalid.
- * @throws {sjcl.exception.corrupt} if the ciphertext is corrupt.
- */
- decrypt: function (password, ciphertext, params, rp) {
- params = params || {};
- rp = rp || {};
-
- var j = sjcl.json, p = j._add(j._add(j._add({},j.defaults),j.decode(ciphertext)), params, true), ct, tmp, prp, adata=p.adata;
- if (typeof p.salt === "string") {
- p.salt = sjcl.codec.base64.toBits(p.salt);
- }
- if (typeof p.iv === "string") {
- p.iv = sjcl.codec.base64.toBits(p.iv);
- }
-
- if (!sjcl.mode[p.mode] ||
- !sjcl.cipher[p.cipher] ||
- (typeof password === "string" && p.iter <= 100) ||
- (p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
- (p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
- (!p.iv) ||
- (p.iv.length < 2 || p.iv.length > 4)) {
- throw new sjcl.exception.invalid("json decrypt: invalid parameters");
- }
-
- if (typeof password === "string") {
- tmp = sjcl.misc.cachedPbkdf2(password, p);
- password = tmp.key.slice(0,p.ks/32);
- p.salt = tmp.salt;
- } else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.secretKey) {
- password = password.unkem(sjcl.codec.base64.toBits(p.kemtag)).slice(0,p.ks/32);
- }
- if (typeof adata === "string") {
- adata = sjcl.codec.utf8String.toBits(adata);
- }
- prp = new sjcl.cipher[p.cipher](password);
-
- /* do the decryption */
- ct = sjcl.mode[p.mode].decrypt(prp, p.ct, p.iv, adata, p.ts);
-
- /* return the json data */
- j._add(rp, p);
- rp.key = password;
-
- return sjcl.codec.utf8String.fromBits(ct);
- },
-
- /** Encode a flat structure into a JSON string.
- * @param {Object} obj The structure to encode.
- * @return {String} A JSON string.
- * @throws {sjcl.exception.invalid} if obj has a non-alphanumeric property.
- * @throws {sjcl.exception.bug} if a parameter has an unsupported type.
- */
- encode: function (obj) {
- var i, out='{', comma='';
- for (i in obj) {
- if (obj.hasOwnProperty(i)) {
- if (!i.match(/^[a-z0-9]+$/i)) {
- throw new sjcl.exception.invalid("json encode: invalid property name");
- }
- out += comma + '"' + i + '":';
- comma = ',';
-
- switch (typeof obj[i]) {
- case 'number':
- case 'boolean':
- out += obj[i];
- break;
-
- case 'string':
- out += '"' + escape(obj[i]) + '"';
- break;
-
- case 'object':
- out += '"' + sjcl.codec.base64.fromBits(obj[i],0) + '"';
- break;
-
- default:
- throw new sjcl.exception.bug("json encode: unsupported type");
- }
- }
- }
- return out+'}';
- },
-
- /** Decode a simple (flat) JSON string into a structure. The ciphertext,
- * adata, salt and iv will be base64-decoded.
- * @param {String} str The string.
- * @return {Object} The decoded structure.
- * @throws {sjcl.exception.invalid} if str isn't (simple) JSON.
- */
- decode: function (str) {
- str = str.replace(/\s/g,'');
- if (!str.match(/^\{.*\}$/)) {
- throw new sjcl.exception.invalid("json decode: this isn't json!");
- }
- var a = str.replace(/^\{|\}$/g, '').split(/,/), out={}, i, m;
- for (i=0; i= this.limbs.length) ? 0 : this.limbs[i];
- },
-
- /**
- * Constant time comparison function.
- * Returns 1 if this >= that, or zero otherwise.
- */
- greaterEquals: function(that) {
- if (typeof that === "number") { that = new this._class(that); }
- var less = 0, greater = 0, i, a, b;
- i = Math.max(this.limbs.length, that.limbs.length) - 1;
- for (; i>= 0; i--) {
- a = this.getLimb(i);
- b = that.getLimb(i);
- greater |= (b - a) & ~less;
- less |= (a - b) & ~greater;
- }
- return (greater | ~less) >>> 31;
- },
-
- /**
- * Convert to a hex string.
- */
- toString: function() {
- this.fullReduce();
- var out="", i, s, l = this.limbs;
- for (i=0; i < this.limbs.length; i++) {
- s = l[i].toString(16);
- while (i < this.limbs.length - 1 && s.length < 6) {
- s = "0" + s;
- }
- out = s + out;
- }
- return "0x"+out;
- },
-
- /** this += that. Does not normalize. */
- addM: function(that) {
- if (typeof(that) !== "object") { that = new this._class(that); }
- var i, l=this.limbs, ll=that.limbs;
- for (i=l.length; i> r;
- }
- if (carry) {
- l.push(carry);
- }
- return this;
- },
-
- /** this /= 2, rounded down. Requires normalized; ends up normalized. */
- halveM: function() {
- var i, carry=0, tmp, r=this.radix, l=this.limbs;
- for (i=l.length-1; i>=0; i--) {
- tmp = l[i];
- l[i] = (tmp+carry)>>1;
- carry = (tmp&1) << r;
- }
- if (!l[l.length-1]) {
- l.pop();
- }
- return this;
- },
-
- /** this -= that. Does not normalize. */
- subM: function(that) {
- if (typeof(that) !== "object") { that = new this._class(that); }
- var i, l=this.limbs, ll=that.limbs;
- for (i=l.length; i 0; ci--) {
- that.halveM();
- if (out.greaterEquals(that)) {
- out.subM(that).normalize();
- }
- }
- return out.trim();
- },
-
- /** return inverse mod prime p. p must be odd. Binary extended Euclidean algorithm mod p. */
- inverseMod: function(p) {
- var a = new sjcl.bn(1), b = new sjcl.bn(0), x = new sjcl.bn(this), y = new sjcl.bn(p), tmp, i, nz=1;
-
- if (!(p.limbs[0] & 1)) {
- throw (new sjcl.exception.invalid("inverseMod: p must be odd"));
- }
-
- // invariant: y is odd
- do {
- if (x.limbs[0] & 1) {
- if (!x.greaterEquals(y)) {
- // x < y; swap everything
- tmp = x; x = y; y = tmp;
- tmp = a; a = b; b = tmp;
- }
- x.subM(y);
- x.normalize();
-
- if (!a.greaterEquals(b)) {
- a.addM(p);
- }
- a.subM(b);
- }
-
- // cut everything in half
- x.halveM();
- if (a.limbs[0] & 1) {
- a.addM(p);
- }
- a.normalize();
- a.halveM();
-
- // check for termination: x ?= 0
- for (i=nz=0; i= 0; i--) {
- out = w.concat(out, [w.partial(Math.min(this.radix,len), this.getLimb(i))]);
- len -= this.radix;
- }
- return out;
- },
-
- /** Return the length in bits, rounded up to the nearest byte. */
- bitLength: function() {
- this.fullReduce();
- var out = this.radix * (this.limbs.length - 1),
- b = this.limbs[this.limbs.length - 1];
- for (; b; b >>>= 1) {
- out ++;
- }
- return out+7 & -8;
- }
-};
-
-/** @this { sjcl.bn } */
-sjcl.bn.fromBits = function(bits) {
- var Class = this, out = new Class(), words=[], w=sjcl.bitArray, t = this.prototype,
- l = Math.min(this.bitLength || 0x100000000, w.bitLength(bits)), e = l % t.radix || t.radix;
-
- words[0] = w.extract(bits, 0, e);
- for (; e < l; e += t.radix) {
- words.unshift(w.extract(bits, e, t.radix));
- }
-
- out.limbs = words;
- return out;
-};
-
-
-
-sjcl.bn.prototype.ipv = 1 / (sjcl.bn.prototype.placeVal = Math.pow(2,sjcl.bn.prototype.radix));
-sjcl.bn.prototype.radixMask = (1 << sjcl.bn.prototype.radix) - 1;
-
-/**
- * Creates a new subclass of bn, based on reduction modulo a pseudo-Mersenne prime,
- * i.e. a prime of the form 2^e + sum(a * 2^b),where the sum is negative and sparse.
- */
-sjcl.bn.pseudoMersennePrime = function(exponent, coeff) {
- /** @constructor */
- function p(it) {
- this.initWith(it);
- /*if (this.limbs[this.modOffset]) {
- this.reduce();
- }*/
- }
-
- var ppr = p.prototype = new sjcl.bn(), i, tmp, mo;
- mo = ppr.modOffset = Math.ceil(tmp = exponent / ppr.radix);
- ppr.exponent = exponent;
- ppr.offset = [];
- ppr.factor = [];
- ppr.minOffset = mo;
- ppr.fullMask = 0;
- ppr.fullOffset = [];
- ppr.fullFactor = [];
- ppr.modulus = p.modulus = new sjcl.bn(Math.pow(2,exponent));
-
- ppr.fullMask = 0|-Math.pow(2, exponent % ppr.radix);
-
- for (i=0; i mo) {
- l = limbs.pop();
- ll = limbs.length;
- for (k=0; k=0; i--) {
- for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
- out = out.doubl().doubl().doubl().doubl().add(multiples[k[i]>>j & 0xF]);
- }
- }
-
- return out;
- },
-
- /**
- * Multiply this point by k, added to affine2*k2, and return the answer in Jacobian coordinates.
- * @param {bigInt} k The coefficient to multiply this by.
- * @param {sjcl.ecc.point} affine This point in affine coordinates.
- * @param {bigInt} k2 The coefficient to multiply affine2 this by.
- * @param {sjcl.ecc.point} affine The other point in affine coordinates.
- * @return {sjcl.ecc.pointJac} The result of the multiplication and addition, in Jacobian coordinates.
- */
- mult2: function(k1, affine, k2, affine2) {
- if (typeof(k1) === "number") {
- k1 = [k1];
- } else if (k1.limbs !== undefined) {
- k1 = k1.normalize().limbs;
- }
-
- if (typeof(k2) === "number") {
- k2 = [k2];
- } else if (k2.limbs !== undefined) {
- k2 = k2.normalize().limbs;
- }
-
- var i, j, out = new sjcl.ecc.point(this.curve).toJac(), m1 = affine.multiples(),
- m2 = affine2.multiples(), l1, l2;
-
- for (i=Math.max(k1.length,k2.length)-1; i>=0; i--) {
- l1 = k1[i] | 0;
- l2 = k2[i] | 0;
- for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
- out = out.doubl().doubl().doubl().doubl().add(m1[l1>>j & 0xF]).add(m2[l2>>j & 0xF]);
- }
- }
-
- return out;
- },
-
- isValid: function() {
- var z2 = this.z.square(), z4 = z2.square(), z6 = z4.mul(z2);
- return this.y.square().equals(
- this.curve.b.mul(z6).add(this.x.mul(
- this.curve.a.mul(z4).add(this.x.square()))));
- }
-};
-
-/**
- * Construct an elliptic curve. Most users will not use this and instead start with one of the NIST curves defined below.
- *
- * @constructor
- * @param {bigInt} p The prime modulus.
- * @param {bigInt} r The prime order of the curve.
- * @param {bigInt} a The constant a in the equation of the curve y^2 = x^3 + ax + b (for NIST curves, a is always -3).
- * @param {bigInt} x The x coordinate of a base point of the curve.
- * @param {bigInt} y The y coordinate of a base point of the curve.
- */
-sjcl.ecc.curve = function(Field, r, a, b, x, y) {
- this.field = Field;
- this.r = Field.prototype.modulus.sub(r);
- this.a = new Field(a);
- this.b = new Field(b);
- this.G = new sjcl.ecc.point(this, new Field(x), new Field(y));
-};
-
-sjcl.ecc.curve.prototype.fromBits = function (bits) {
- var w = sjcl.bitArray, l = this.field.prototype.exponent + 7 & -8,
- p = new sjcl.ecc.point(this, this.field.fromBits(w.bitSlice(bits, 0, l)),
- this.field.fromBits(w.bitSlice(bits, l, 2*l)));
- if (!p.isValid()) {
- throw new sjcl.exception.corrupt("not on the curve!");
- }
- return p;
-};
-
-sjcl.ecc.curves = {
- c192: new sjcl.ecc.curve(
- sjcl.bn.prime.p192,
- "0x662107c8eb94364e4b2dd7ce",
- -3,
- "0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",
- "0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",
- "0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811"),
-
- c224: new sjcl.ecc.curve(
- sjcl.bn.prime.p224,
- "0xe95c1f470fc1ec22d6baa3a3d5c4",
- -3,
- "0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",
- "0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
- "0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"),
-
- c256: new sjcl.ecc.curve(
- sjcl.bn.prime.p256,
- "0x4319055358e8617b0c46353d039cdaae",
- -3,
- "0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
- "0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
- "0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"),
-
- c384: new sjcl.ecc.curve(
- sjcl.bn.prime.p384,
- "0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c",
- -3,
- "0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",
- "0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",
- "0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f")
-};
-
-
-/* Diffie-Hellman-like public-key system */
-sjcl.ecc._dh = function(cn) {
- sjcl.ecc[cn] = {
- /** @constructor */
- publicKey: function(curve, point) {
- this._curve = curve;
- this._curveBitLength = curve.r.bitLength();
- if (point instanceof Array) {
- this._point = curve.fromBits(point);
- } else {
- this._point = point;
- }
-
- this.get = function() {
- var pointbits = this._point.toBits();
- var len = sjcl.bitArray.bitLength(pointbits);
- var x = sjcl.bitArray.bitSlice(pointbits, 0, len/2);
- var y = sjcl.bitArray.bitSlice(pointbits, len/2);
- return { x: x, y: y };
- }
- },
-
- /** @constructor */
- secretKey: function(curve, exponent) {
- this._curve = curve;
- this._curveBitLength = curve.r.bitLength();
- this._exponent = exponent;
-
- this.get = function() {
- return this._exponent.toBits();
- }
- },
-
- /** @constructor */
- generateKeys: function(curve, paranoia, sec) {
- if (curve === undefined) {
- curve = 256;
- }
- if (typeof curve === "number") {
- curve = sjcl.ecc.curves['c'+curve];
- if (curve === undefined) {
- throw new sjcl.exception.invalid("no such curve");
- }
- }
- if (sec === undefined) {
- var sec = sjcl.bn.random(curve.r, paranoia);
- }
- var pub = curve.G.mult(sec);
- return { pub: new sjcl.ecc[cn].publicKey(curve, pub),
- sec: new sjcl.ecc[cn].secretKey(curve, sec) };
- }
- };
-};
-
-sjcl.ecc._dh("elGamal");
-
-sjcl.ecc.elGamal.publicKey.prototype = {
- kem: function(paranoia) {
- var sec = sjcl.bn.random(this._curve.r, paranoia),
- tag = this._curve.G.mult(sec).toBits(),
- key = sjcl.hash.sha256.hash(this._point.mult(sec).toBits());
- return { key: key, tag: tag };
- }
-};
-
-sjcl.ecc.elGamal.secretKey.prototype = {
- unkem: function(tag) {
- return sjcl.hash.sha256.hash(this._curve.fromBits(tag).mult(this._exponent).toBits());
- },
-
- dh: function(pk) {
- return sjcl.hash.sha256.hash(pk._point.mult(this._exponent).toBits());
- }
-};
-
-sjcl.ecc._dh("ecdsa");
-
-sjcl.ecc.ecdsa.secretKey.prototype = {
- sign: function(hash, paranoia, fakeLegacyVersion, fixedKForTesting) {
- if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
- hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
- }
- var R = this._curve.r,
- l = R.bitLength(),
- k = fixedKForTesting || sjcl.bn.random(R.sub(1), paranoia).add(1),
- r = this._curve.G.mult(k).x.mod(R),
- ss = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)),
- s = fakeLegacyVersion ? ss.inverseMod(R).mul(k).mod(R)
- : ss.mul(k.inverseMod(R)).mod(R);
- return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
- }
-};
-
-sjcl.ecc.ecdsa.publicKey.prototype = {
- verify: function(hash, rs, fakeLegacyVersion) {
- if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
- hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
- }
- var w = sjcl.bitArray,
- R = this._curve.r,
- l = this._curveBitLength,
- r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
- ss = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)),
- s = fakeLegacyVersion ? ss : ss.inverseMod(R),
- hG = sjcl.bn.fromBits(hash).mul(s).mod(R),
- hA = r.mul(s).mod(R),
- r2 = this._curve.G.mult2(hG, hA, this._point).x;
- if (r.equals(0) || ss.equals(0) || r.greaterEquals(R) || ss.greaterEquals(R) || !r2.equals(r)) {
- if (fakeLegacyVersion === undefined) {
- return this.verify(hash, rs, true);
- } else {
- throw (new sjcl.exception.corrupt("signature didn't check out"));
- }
- }
- return true;
- }
-};
-
-/** @fileOverview Javascript SRP implementation.
- *
- * This file contains a partial implementation of the SRP (Secure Remote
- * Password) password-authenticated key exchange protocol. Given a user
- * identity, salt, and SRP group, it generates the SRP verifier that may
- * be sent to a remote server to establish and SRP account.
- *
- * For more information, see http://srp.stanford.edu/.
- *
- * @author Quinn Slack
- */
-
-/**
- * Compute the SRP verifier from the username, password, salt, and group.
- * @class SRP
- */
-sjcl.keyexchange.srp = {
- /**
- * Calculates SRP v, the verifier.
- * v = g^x mod N [RFC 5054]
- * @param {String} I The username.
- * @param {String} P The password.
- * @param {Object} s A bitArray of the salt.
- * @param {Object} group The SRP group. Use sjcl.keyexchange.srp.knownGroup
- to obtain this object.
- * @return {Object} A bitArray of SRP v.
- */
- makeVerifier: function(I, P, s, group) {
- var x;
- x = sjcl.keyexchange.srp.makeX(I, P, s);
- x = sjcl.bn.fromBits(x);
- return group.g.powermod(x, group.N);
- },
-
- /**
- * Calculates SRP x.
- * x = SHA1( | SHA( | ":" | )) [RFC 2945]
- * @param {String} I The username.
- * @param {String} P The password.
- * @param {Object} s A bitArray of the salt.
- * @return {Object} A bitArray of SRP x.
- */
- makeX: function(I, P, s) {
- var inner = sjcl.hash.sha1.hash(I + ':' + P);
- return sjcl.hash.sha1.hash(sjcl.bitArray.concat(s, inner));
- },
-
- /**
- * Returns the known SRP group with the given size (in bits).
- * @param {String} i The size of the known SRP group.
- * @return {Object} An object with "N" and "g" properties.
- */
- knownGroup:function(i) {
- if (typeof i !== "string") { i = i.toString(); }
- if (!sjcl.keyexchange.srp._didInitKnownGroups) { sjcl.keyexchange.srp._initKnownGroups(); }
- return sjcl.keyexchange.srp._knownGroups[i];
- },
-
- /**
- * Initializes bignum objects for known group parameters.
- * @private
- */
- _didInitKnownGroups: false,
- _initKnownGroups:function() {
- var i, size, group;
- for (i=0; i < sjcl.keyexchange.srp._knownGroupSizes.length; i++) {
- size = sjcl.keyexchange.srp._knownGroupSizes[i].toString();
- group = sjcl.keyexchange.srp._knownGroups[size];
- group.N = new sjcl.bn(group.N);
- group.g = new sjcl.bn(group.g);
- }
- sjcl.keyexchange.srp._didInitKnownGroups = true;
- },
-
- _knownGroupSizes: [1024, 1536, 2048],
- _knownGroups: {
- 1024: {
- N: "EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C" +
- "9C256576D674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE4" +
- "8E495C1D6089DAD15DC7D7B46154D6B6CE8EF4AD69B15D4982559B29" +
- "7BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976EAA9A" +
- "FD5138FE8376435B9FC61D2FC0EB06E3",
- g:2
- },
-
- 1536: {
- N: "9DEF3CAFB939277AB1F12A8617A47BBBDBA51DF499AC4C80BEEEA961" +
- "4B19CC4D5F4F5F556E27CBDE51C6A94BE4607A291558903BA0D0F843" +
- "80B655BB9A22E8DCDF028A7CEC67F0D08134B1C8B97989149B609E0B" +
- "E3BAB63D47548381DBC5B1FC764E3F4B53DD9DA1158BFD3E2B9C8CF5" +
- "6EDF019539349627DB2FD53D24B7C48665772E437D6C7F8CE442734A" +
- "F7CCB7AE837C264AE3A9BEB87F8A2FE9B8B5292E5A021FFF5E91479E" +
- "8CE7A28C2442C6F315180F93499A234DCF76E3FED135F9BB",
- g: 2
- },
-
- 2048: {
- N: "AC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC319294" +
- "3DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310D" +
- "CD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FB" +
- "D5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF74" +
- "7359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A" +
- "436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D" +
- "5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E73" +
- "03CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB6" +
- "94B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F" +
- "9E4AFF73",
- g: 2
- }
- }
-
-};
-
-
-/**
- * Check that the point is valid based on the method described in
- * SEC 1: Elliptic Curve Cryptography, section 3.2.2.1:
- * Elliptic Curve Public Key Validation Primitive
- * http://www.secg.org/download/aid-780/sec1-v2.pdf
- *
- * @returns {Boolean}
- */
-sjcl.ecc.point.prototype.isValidPoint = function() {
-
- var self = this;
-
- var field_modulus = self.curve.field.modulus;
-
- if (self.isIdentity) {
- return false;
- }
-
- // Check that coordinatres are in bounds
- // Return false if x < 1 or x > (field_modulus - 1)
- if (((new sjcl.bn(1).greaterEquals(self.x)) &&
- !self.x.equals(1)) ||
- (self.x.greaterEquals(field_modulus.sub(1))) &&
- !self.x.equals(1)) {
-
- return false;
- }
-
- // Return false if y < 1 or y > (field_modulus - 1)
- if (((new sjcl.bn(1).greaterEquals(self.y)) &&
- !self.y.equals(1)) ||
- (self.y.greaterEquals(field_modulus.sub(1))) &&
- !self.y.equals(1)) {
-
- return false;
- }
-
- if (!self.isOnCurve()) {
- return false;
- }
-
- // TODO check to make sure point is a scalar multiple of base_point
-
- return true;
-
-};
-
-/**
- * Check that the point is on the curve
- *
- * @returns {Boolean}
- */
-sjcl.ecc.point.prototype.isOnCurve = function() {
-
- var self = this;
-
- var field_order = self.curve.r;
- var component_a = self.curve.a;
- var component_b = self.curve.b;
- var field_modulus = self.curve.field.modulus;
-
- var left_hand_side = self.y.mul(self.y).mod(field_modulus);
- var right_hand_side = self.x.mul(self.x).mul(self.x).add(component_a.mul(self.x)).add(component_b).mod(field_modulus);
-
- return left_hand_side.equals(right_hand_side);
-
-};
-
-
-sjcl.ecc.point.prototype.toString = function() {
- return '(' +
- this.x.toString() + ', ' +
- this.y.toString() +
- ')';
-};
-
-sjcl.ecc.pointJac.prototype.toString = function() {
- return '(' +
- this.x.toString() + ', ' +
- this.y.toString() + ', ' +
- this.z.toString() +
- ')';
-};
-
-// ----- for secp256k1 ------
-
-// Overwrite NIST-P256 with secp256k1
-sjcl.ecc.curves.c256 = new sjcl.ecc.curve(
- sjcl.bn.pseudoMersennePrime(256, [[0,-1],[4,-1],[6,-1],[7,-1],[8,-1],[9,-1],[32,-1]]),
- "0x14551231950b75fc4402da1722fc9baee",
- 0,
- 7,
- "0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
- "0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"
-);
-
-// Replace point addition and doubling algorithms
-// NIST-P256 is a=-3, we need algorithms for a=0
-sjcl.ecc.pointJac.prototype.add = function(T) {
- var S = this;
- if (S.curve !== T.curve) {
- throw("sjcl.ecc.add(): Points must be on the same curve to add them!");
- }
-
- if (S.isIdentity) {
- return T.toJac();
- } else if (T.isIdentity) {
- return S;
- }
-
- var z1z1 = S.z.square();
- var h = T.x.mul(z1z1).subM(S.x);
- var s2 = T.y.mul(S.z).mul(z1z1);
-
- if (h.equals(0)) {
- if (S.y.equals(T.y.mul(z1z1.mul(S.z)))) {
- // same point
- return S.doubl();
- } else {
- // inverses
- return new sjcl.ecc.pointJac(S.curve);
- }
- }
-
- var hh = h.square();
- var i = hh.copy().doubleM().doubleM();
- var j = h.mul(i);
- var r = s2.sub(S.y).doubleM();
- var v = S.x.mul(i);
-
- var x = r.square().subM(j).subM(v.copy().doubleM());
- var y = r.mul(v.sub(x)).subM(S.y.mul(j).doubleM());
- var z = S.z.add(h).square().subM(z1z1).subM(hh);
-
- return new sjcl.ecc.pointJac(this.curve,x,y,z);
-};
-
-sjcl.ecc.pointJac.prototype.doubl = function () {
- if (this.isIdentity) { return this; }
-
- var a = this.x.square();
- var b = this.y.square();
- var c = b.square();
- var d = this.x.add(b).square().subM(a).subM(c).doubleM();
- var e = a.mul(3);
- var f = e.square();
- var x = f.sub(d.copy().doubleM());
- var y = e.mul(d.sub(x)).subM(c.doubleM().doubleM().doubleM());
- var z = this.z.mul(this.y).doubleM();
- return new sjcl.ecc.pointJac(this.curve, x, y, z);
-};
-
-sjcl.ecc.point.prototype.toBytesCompressed = function () {
- var header = this.y.mod(2).toString() == "0x0" ? 0x02 : 0x03;
- return [header].concat(sjcl.codec.bytes.fromBits(this.x.toBits()))
-};
-
-/** @fileOverview Javascript RIPEMD-160 implementation.
- *
- * @author Artem S Vybornov
- */
-(function() {
-
-/**
- * Context for a RIPEMD-160 operation in progress.
- * @constructor
- * @class RIPEMD, 160 bits.
- */
-sjcl.hash.ripemd160 = function (hash) {
- if (hash) {
- this._h = hash._h.slice(0);
- this._buffer = hash._buffer.slice(0);
- this._length = hash._length;
- } else {
- this.reset();
- }
-};
-
-/**
- * Hash a string or an array of words.
- * @static
- * @param {bitArray|String} data the data to hash.
- * @return {bitArray} The hash value, an array of 5 big-endian words.
- */
-sjcl.hash.ripemd160.hash = function (data) {
- return (new sjcl.hash.ripemd160()).update(data).finalize();
-};
-
-sjcl.hash.ripemd160.prototype = {
- /**
- * Reset the hash state.
- * @return this
- */
- reset: function () {
- this._h = _h0.slice(0);
- this._buffer = [];
- this._length = 0;
- return this;
- },
-
- /**
- * Reset the hash state.
- * @param {bitArray|String} data the data to hash.
- * @return this
- */
- update: function (data) {
- if ( typeof data === "string" )
- data = sjcl.codec.utf8String.toBits(data);
-
- var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
- ol = this._length,
- nl = this._length = ol + sjcl.bitArray.bitLength(data);
- for (i = 512+ol & -512; i <= nl; i+= 512) {
- var words = b.splice(0,16);
- for ( var w = 0; w < 16; ++w )
- words[w] = _cvt(words[w]);
-
- _block.call( this, words );
- }
-
- return this;
- },
-
- /**
- * Complete hashing and output the hash value.
- * @return {bitArray} The hash value, an array of 5 big-endian words.
- */
- finalize: function () {
- var b = sjcl.bitArray.concat( this._buffer, [ sjcl.bitArray.partial(1,1) ] ),
- l = ( this._length + 1 ) % 512,
- z = ( l > 448 ? 512 : 448 ) - l % 448,
- zp = z % 32;
-
- if ( zp > 0 )
- b = sjcl.bitArray.concat( b, [ sjcl.bitArray.partial(zp,0) ] )
- for ( ; z >= 32; z -= 32 )
- b.push(0);
-
- b.push( _cvt( this._length | 0 ) );
- b.push( _cvt( Math.floor(this._length / 0x100000000) ) );
-
- while ( b.length ) {
- var words = b.splice(0,16);
- for ( var w = 0; w < 16; ++w )
- words[w] = _cvt(words[w]);
-
- _block.call( this, words );
- }
-
- var h = this._h;
- this.reset();
-
- for ( var w = 0; w < 5; ++w )
- h[w] = _cvt(h[w]);
-
- return h;
- }
-};
-
-var _h0 = [ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ];
-
-var _k1 = [ 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e ];
-var _k2 = [ 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000 ];
-for ( var i = 4; i >= 0; --i ) {
- for ( var j = 1; j < 16; ++j ) {
- _k1.splice(i,0,_k1[i]);
- _k2.splice(i,0,_k2[i]);
- }
-}
-
-var _r1 = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
- 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
- 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
- 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 ];
-var _r2 = [ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
- 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
- 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
- 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
- 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 ];
-
-var _s1 = [ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
- 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
- 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
- 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
- 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ];
-var _s2 = [ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
- 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
- 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
- 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
- 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ];
-
-function _f0(x,y,z) {
- return x ^ y ^ z;
-};
-
-function _f1(x,y,z) {
- return (x & y) | (~x & z);
-};
-
-function _f2(x,y,z) {
- return (x | ~y) ^ z;
-};
-
-function _f3(x,y,z) {
- return (x & z) | (y & ~z);
-};
-
-function _f4(x,y,z) {
- return x ^ (y | ~z);
-};
-
-function _rol(n,l) {
- return (n << l) | (n >>> (32-l));
-}
-
-function _cvt(n) {
- return ( (n & 0xff << 0) << 24 )
- | ( (n & 0xff << 8) << 8 )
- | ( (n & 0xff << 16) >>> 8 )
- | ( (n & 0xff << 24) >>> 24 );
-}
-
-function _block(X) {
- var A1 = this._h[0], B1 = this._h[1], C1 = this._h[2], D1 = this._h[3], E1 = this._h[4],
- A2 = this._h[0], B2 = this._h[1], C2 = this._h[2], D2 = this._h[3], E2 = this._h[4];
-
- var j = 0, T;
-
- for ( ; j < 16; ++j ) {
- T = _rol( A1 + _f0(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
- A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
- T = _rol( A2 + _f4(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
- A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
- for ( ; j < 32; ++j ) {
- T = _rol( A1 + _f1(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
- A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
- T = _rol( A2 + _f3(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
- A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
- for ( ; j < 48; ++j ) {
- T = _rol( A1 + _f2(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
- A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
- T = _rol( A2 + _f2(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
- A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
- for ( ; j < 64; ++j ) {
- T = _rol( A1 + _f3(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
- A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
- T = _rol( A2 + _f1(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
- A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
- for ( ; j < 80; ++j ) {
- T = _rol( A1 + _f4(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
- A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
- T = _rol( A2 + _f0(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
- A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
-
- T = this._h[1] + C1 + D2;
- this._h[1] = this._h[2] + D1 + E2;
- this._h[2] = this._h[3] + E1 + A2;
- this._h[3] = this._h[4] + A1 + B2;
- this._h[4] = this._h[0] + B1 + C2;
- this._h[0] = T;
-}
-
-})();
-
-sjcl.bn.ZERO = new sjcl.bn(0);
-
-/** [ this / that , this % that ] */
-sjcl.bn.prototype.divRem = function (that) {
- if (typeof(that) !== "object") { that = new this._class(that); }
- var thisa = this.abs(), thata = that.abs(), quot = new this._class(0),
- ci = 0;
- if (!thisa.greaterEquals(thata)) {
- return [new sjcl.bn(0), this.copy()];
- } else if (thisa.equals(thata)) {
- return [new sjcl.bn(1), new sjcl.bn(0)];
- }
-
- for (; thisa.greaterEquals(thata); ci++) {
- thata.doubleM();
- }
- for (; ci > 0; ci--) {
- quot.doubleM();
- thata.halveM();
- if (thisa.greaterEquals(thata)) {
- quot.addM(1);
- thisa.subM(that).normalize();
- }
- }
- return [quot, thisa];
-};
-
-/** this /= that (rounded to nearest int) */
-sjcl.bn.prototype.divRound = function (that) {
- var dr = this.divRem(that), quot = dr[0], rem = dr[1];
-
- if (rem.doubleM().greaterEquals(that)) {
- quot.addM(1);
- }
-
- return quot;
-};
-
-/** this /= that (rounded down) */
-sjcl.bn.prototype.div = function (that) {
- var dr = this.divRem(that);
- return dr[0];
-};
-
-sjcl.bn.prototype.sign = function () {
- return this.greaterEquals(sjcl.bn.ZERO) ? 1 : -1;
-};
-
-/** -this */
-sjcl.bn.prototype.neg = function () {
- return sjcl.bn.ZERO.sub(this);
-};
-
-/** |this| */
-sjcl.bn.prototype.abs = function () {
- if (this.sign() === -1) {
- return this.neg();
- } else return this;
-};
-
-/** this >> that */
-sjcl.bn.prototype.shiftRight = function (that) {
- if ("number" !== typeof that) {
- throw new Error("shiftRight expects a number");
- }
-
- that = +that;
-
- if (that < 0) {
- return this.shiftLeft(that);
- }
-
- var a = new sjcl.bn(this);
-
- while (that >= this.radix) {
- a.limbs.shift();
- that -= this.radix;
- }
-
- while (that--) {
- a.halveM();
- }
-
- return a;
-};
-
-/** this >> that */
-sjcl.bn.prototype.shiftLeft = function (that) {
- if ("number" !== typeof that) {
- throw new Error("shiftLeft expects a number");
- }
-
- that = +that;
-
- if (that < 0) {
- return this.shiftRight(that);
- }
-
- var a = new sjcl.bn(this);
-
- while (that >= this.radix) {
- a.limbs.unshift(0);
- that -= this.radix;
- }
-
- while (that--) {
- a.doubleM();
- }
-
- return a;
-};
-
-/** (int)this */
-// NOTE Truncates to 32-bit integer
-sjcl.bn.prototype.toNumber = function () {
- return this.limbs[0] | 0;
-};
-
-/** find n-th bit, 0 = LSB */
-sjcl.bn.prototype.testBit = function (bitIndex) {
- var limbIndex = Math.floor(bitIndex / this.radix);
- var bitIndexInLimb = bitIndex % this.radix;
-
- if (limbIndex >= this.limbs.length) return 0;
-
- return (this.limbs[limbIndex] >>> bitIndexInLimb) & 1;
-};
-
-/** set n-th bit, 0 = LSB */
-sjcl.bn.prototype.setBitM = function (bitIndex) {
- var limbIndex = Math.floor(bitIndex / this.radix);
- var bitIndexInLimb = bitIndex % this.radix;
-
- while (limbIndex >= this.limbs.length) this.limbs.push(0);
-
- this.limbs[limbIndex] |= 1 << bitIndexInLimb;
-
- this.cnormalize();
-
- return this;
-};
-
-sjcl.bn.prototype.modInt = function (n) {
- return this.toNumber() % n;
-};
-
-sjcl.bn.prototype.invDigit = function ()
-{
- var radixMod = 1 + this.radixMask;
-
- if (this.limbs.length < 1) return 0;
- var x = this.limbs[0];
- if ((x&1) == 0) return 0;
- var y = x&3; // y == 1/x mod 2^2
- y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
- y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
- y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < radixMod <= 32 and assumes ability to handle 48-bit ints
- y = (y*(2-x*y%radixMod))%radixMod; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y>0)?radixMod-y:-y;
-};
-
-// returns bit length of the integer x
-function nbits(x) {
- var r = 1, t;
- if((t=x>>>16) != 0) { x = t; r += 16; }
- if((t=x>>8) != 0) { x = t; r += 8; }
- if((t=x>>4) != 0) { x = t; r += 4; }
- if((t=x>>2) != 0) { x = t; r += 2; }
- if((t=x>>1) != 0) { x = t; r += 1; }
- return r;
-}
-
-// JSBN-style add and multiply for SJCL w/ 24 bit radix
-sjcl.bn.prototype.am = function (i,x,w,j,c,n) {
- var xl = x&0xfff, xh = x>>12;
- while (--n >= 0) {
- var l = this.limbs[i]&0xfff;
- var h = this.limbs[i++]>>12;
- var m = xh*l+h*xl;
- l = xl*l+((m&0xfff)<<12)+w.limbs[j]+c;
- c = (l>>24)+(m>>12)+xh*h;
- w.limbs[j++] = l&0xffffff;
- }
- return c;
-}
-
-var Montgomery = function (m)
-{
- this.m = m;
- this.mt = m.limbs.length;
- this.mt2 = this.mt * 2;
- this.mp = m.invDigit();
- this.mpl = this.mp&0x7fff;
- this.mph = this.mp>>15;
- this.um = (1<<(m.radix-15))-1;
-};
-
-Montgomery.prototype.reduce = function (x)
-{
- var radixMod = x.radixMask + 1;
- while (x.limbs.length <= this.mt2) // pad x so am has enough room later
- x.limbs[x.limbs.length] = 0;
- for (var i = 0; i < this.mt; ++i) {
- // faster way of calculating u0 = x[i]*mp mod 2^radix
- var j = x.limbs[i]&0x7fff;
- var u0 = (j*this.mpl+(((j*this.mph+(x.limbs[i]>>15)*this.mpl)&this.um)<<15))&x.radixMask;
- // use am to combine the multiply-shift-add into one call
- j = i+this.mt;
- x.limbs[j] += this.m.am(0,u0,x,i,0,this.mt);
- // propagate carry
- while (x.limbs[j] >= radixMod) { x.limbs[j] -= radixMod; x.limbs[++j]++; }
- }
- x.trim();
- x = x.shiftRight(this.mt * this.m.radix);
- if (x.greaterEquals(this.m)) x = x.sub(this.m);
- return x.trim().normalize().reduce();
-};
-
-Montgomery.prototype.square = function (x)
-{
- return this.reduce(x.square());
-};
-
-Montgomery.prototype.multiply = function (x, y)
-{
- return this.reduce(x.mul(y));
-};
-
-Montgomery.prototype.convert = function (x)
-{
- return x.abs().shiftLeft(this.mt * this.m.radix).mod(this.m);
-};
-
-Montgomery.prototype.revert = function (x)
-{
- return this.reduce(x.copy());
-};
-
-sjcl.bn.prototype.powermodMontgomery = function (e, m)
-{
- var i = e.bitLength(), k, r = new this._class(1);
-
- if (i <= 0) return r;
- else if (i < 18) k = 1;
- else if (i < 48) k = 3;
- else if (i < 144) k = 4;
- else if (i < 768) k = 5;
- else k = 6;
-
- if (i < 8 || !m.testBit(0)) {
- // For small exponents and even moduli, use a simple square-and-multiply
- // algorithm.
- return this.powermod(e, m);
- }
-
- var z = new Montgomery(m);
-
- e.trim().normalize();
-
- // precomputation
- var g = new Array(), n = 3, k1 = k-1, km = (1< 1) {
- var g2 = z.square(g[1]);
-
- while (n <= km) {
- g[n] = z.multiply(g2, g[n-2]);
- n += 2;
- }
- }
-
- var j = e.limbs.length-1, w, is1 = true, r2 = new this._class(), t;
- i = nbits(e.limbs[j])-1;
- while (j >= 0) {
- if (i >= k1) w = (e.limbs[j]>>(i-k1))&km;
- else {
- w = (e.limbs[j]&((1<<(i+1))-1))<<(k1-i);
- if (j > 0) w |= e.limbs[j-1]>>(this.radix+i-k1);
- }
-
- n = k;
- while ((w&1) == 0) { w >>= 1; --n; }
- if ((i -= n) < 0) { i += this.radix; --j; }
- if (is1) { // ret == 1, don't bother squaring or multiplying it
- r = g[w].copy();
- is1 = false;
- } else {
- while (n > 1) { r2 = z.square(r); r = z.square(r2); n -= 2; }
- if (n > 0) r2 = z.square(r); else { t = r; r = r2; r2 = t; }
- r = z.multiply(r2,g[w]);
- }
-
- while (j >= 0 && (e.limbs[j]&(1< 0 && typeof k_for_testing[0] === 'number') {
- k = k_for_testing;
- } else if (typeof k_for_testing === 'string' && /^[0-9a-fA-F]+$/.test(k_for_testing)) {
- k = sjcl.bn.fromBits(sjcl.codec.hex.toBits(k_for_testing));
- } else {
- // This is the only option that should be used in production
- k = sjcl.bn.random(R.sub(1), paranoia).add(1);
- }
-
- var r = this._curve.G.mult(k).x.mod(R);
- var s = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)).mul(k.inverseMod(R)).mod(R);
-
- return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
-};
-
-sjcl.ecc.ecdsa.publicKey.prototype.verify = function(hash, rs) {
- var w = sjcl.bitArray,
- R = this._curve.r,
- l = R.bitLength(),
- r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
- s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)),
- sInv = s.inverseMod(R),
- hG = sjcl.bn.fromBits(hash).mul(sInv).mod(R),
- hA = r.mul(sInv).mod(R),
- r2 = this._curve.G.mult2(hG, hA, this._point).x;
-
- if (r.equals(0) || s.equals(0) || r.greaterEquals(R) || s.greaterEquals(R) || !r2.equals(r)) {
- throw (new sjcl.exception.corrupt("signature didn't check out"));
- }
- return true;
-};
-
-sjcl.ecc.ecdsa.secretKey.prototype.canonicalizeSignature = function(rs) {
- var w = sjcl.bitArray,
- R = this._curve.r,
- l = R.bitLength();
-
- var r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
- s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l));
-
- // For a canonical signature we want the lower of two possible values for s
- // 0 < s <= n/2
- if (!R.copy().halveM().greaterEquals(s)) {
- s = R.sub(s);
- }
-
- return w.concat(r.toBits(l), s.toBits(l));
-};
-
-
-sjcl.ecc.ecdsa.secretKey.prototype.signDER = function(hash, paranoia) {
- return this.encodeDER(this.sign(hash, paranoia));
-};
-
-sjcl.ecc.ecdsa.secretKey.prototype.encodeDER = function(rs) {
- var w = sjcl.bitArray,
- R = this._curve.r,
- l = R.bitLength();
-
- var rb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,0,l)),
- sb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,l,2*l));
-
- // Drop empty leading bytes
- while (!rb[0] && rb.length) rb.shift();
- while (!sb[0] && sb.length) sb.shift();
-
- // If high bit is set, prepend an extra zero byte (DER signed integer)
- if (rb[0] & 0x80) rb.unshift(0);
- if (sb[0] & 0x80) sb.unshift(0);
-
- var buffer = [].concat(
- 0x30,
- 4 + rb.length + sb.length,
- 0x02,
- rb.length,
- rb,
- 0x02,
- sb.length,
- sb
- );
-
- return sjcl.codec.bytes.toBits(buffer);
-};
-
-
-/**
- * This module uses the public key recovery method
- * described in SEC 1: Elliptic Curve Cryptography,
- * section 4.1.6, "Public Key Recovery Operation".
- * http://www.secg.org/download/aid-780/sec1-v2.pdf
- *
- * Implementation based on:
- * https://github.com/bitcoinjs/bitcoinjs-lib/blob/89cf731ac7309b4f98994e3b4b67b7226020181f/src/ecdsa.js
- */
-
-// Defined here so that this value only needs to be calculated once
-var FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR;
-
-/**
- * Sign the given hash such that the public key, prepending an extra byte
- * so that the public key will be recoverable from the signature
- *
- * @param {bitArray} hash
- * @param {Number} paranoia
- * @returns {bitArray} Signature formatted as bitArray
- */
-sjcl.ecc.ecdsa.secretKey.prototype.signWithRecoverablePublicKey = function(hash, paranoia, k_for_testing) {
-
- var self = this;
-
- // Convert hash to bits and determine encoding for output
- var hash_bits;
- if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
- hash_bits = hash;
- } else {
- throw new sjcl.exception.invalid('hash. Must be a bitArray');
- }
-
- // Sign hash with standard, canonicalized method
- var standard_signature = self.sign(hash_bits, paranoia, k_for_testing);
- var canonical_signature = self.canonicalizeSignature(standard_signature);
-
- // Extract r and s signature components from canonical signature
- var r_and_s = getRandSFromSignature(self._curve, canonical_signature);
-
- // Rederive public key
- var public_key = self._curve.G.mult(sjcl.bn.fromBits(self.get()));
-
- // Determine recovery factor based on which possible value
- // returns the correct public key
- var recovery_factor = calculateRecoveryFactor(self._curve, r_and_s.r, r_and_s.s, hash_bits, public_key);
-
- // Prepend recovery_factor to signature and encode in DER
- // The value_to_prepend should be 4 bytes total
- var value_to_prepend = recovery_factor + 27;
-
- var final_signature_bits = sjcl.bitArray.concat([value_to_prepend], canonical_signature);
-
- // Return value in bits
- return final_signature_bits;
-
-};
-
-
-/**
- * Recover the public key from a signature created with the
- * signWithRecoverablePublicKey method in this module
- *
- * @static
- *
- * @param {bitArray} hash
- * @param {bitArray} signature
- * @param {sjcl.ecc.curve} [sjcl.ecc.curves['c256']] curve
- * @returns {sjcl.ecc.ecdsa.publicKey} Public key
- */
-sjcl.ecc.ecdsa.publicKey.recoverFromSignature = function(hash, signature, curve) {
-
- if (!signature || signature instanceof sjcl.ecc.curve) {
- throw new sjcl.exception.invalid('must supply hash and signature to recover public key');
- }
-
- if (!curve) {
- curve = sjcl.ecc.curves['c256'];
- }
-
- // Convert hash to bits and determine encoding for output
- var hash_bits;
- if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
- hash_bits = hash;
- } else {
- throw new sjcl.exception.invalid('hash. Must be a bitArray');
- }
-
- var signature_bits;
- if (typeof signature === 'object' && signature.length > 0 && typeof signature[0] === 'number') {
- signature_bits = signature;
- } else {
- throw new sjcl.exception.invalid('signature. Must be a bitArray');
- }
-
- // Extract recovery_factor from first 4 bytes
- var recovery_factor = signature_bits[0] - 27;
-
- if (recovery_factor < 0 || recovery_factor > 3) {
- throw new sjcl.exception.invalid('signature. Signature must be generated with algorithm ' +
- 'that prepends the recovery factor in order to recover the public key');
- }
-
- // Separate r and s values
- var r_and_s = getRandSFromSignature(curve, signature_bits.slice(1));
- var signature_r = r_and_s.r;
- var signature_s = r_and_s.s;
-
- // Recover public key using recovery_factor
- var recovered_public_key_point = recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor);
- var recovered_public_key = new sjcl.ecc.ecdsa.publicKey(curve, recovered_public_key_point);
-
- return recovered_public_key;
-
-};
-
-
-/**
- * Retrieve the r and s components of a signature
- *
- * @param {sjcl.ecc.curve} curve
- * @param {bitArray} signature
- * @returns {Object} Object with 'r' and 's' fields each as an sjcl.bn
- */
-function getRandSFromSignature(curve, signature) {
-
- var r_length = curve.r.bitLength();
-
- return {
- r: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, 0, r_length)),
- s: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, r_length, sjcl.bitArray.bitLength(signature)))
- };
-};
-
-
-/**
- * Determine the recovery factor by trying all four
- * possibilities and figuring out which results in the
- * correct public key
- *
- * @param {sjcl.ecc.curve} curve
- * @param {sjcl.bn} r
- * @param {sjcl.bn} s
- * @param {bitArray} hash_bits
- * @param {sjcl.ecc.point} original_public_key_point
- * @returns {Number, 0-3} Recovery factor
- */
-function calculateRecoveryFactor(curve, r, s, hash_bits, original_public_key_point) {
-
- var original_public_key_point_bits = original_public_key_point.toBits();
-
- // TODO: verify that it is possible for the recovery_factor to be 2 or 3,
- // we may only need 1 bit because the canonical signature might remove the
- // possibility of us needing to "use the second candidate key"
- for (var possible_factor = 0; possible_factor < 4; possible_factor++) {
-
- var resulting_public_key_point;
- try {
- resulting_public_key_point = recoverPublicKeyPointFromSignature(curve, r, s, hash_bits, possible_factor);
- } catch (err) {
- // console.log(err, err.stack);
- continue;
- }
-
- if (sjcl.bitArray.equal(resulting_public_key_point.toBits(), original_public_key_point_bits)) {
- return possible_factor;
- }
-
- }
-
- throw new sjcl.exception.bug('unable to calculate recovery factor from signature');
-
-};
-
-
-/**
- * Recover the public key from the signature.
- *
- * @param {sjcl.ecc.curve} curve
- * @param {sjcl.bn} r
- * @param {sjcl.bn} s
- * @param {bitArray} hash_bits
- * @param {Number, 0-3} recovery_factor
- * @returns {sjcl.point} Public key corresponding to signature
- */
-function recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor) {
-
- var field_order = curve.r;
- var field_modulus = curve.field.modulus;
-
- // Reduce the recovery_factor to the two bits used
- recovery_factor = recovery_factor & 3;
-
- // The less significant bit specifies whether the y coordinate
- // of the compressed point is even or not.
- var compressed_point_y_coord_is_even = recovery_factor & 1;
-
- // The more significant bit specifies whether we should use the
- // first or second candidate key.
- var use_second_candidate_key = recovery_factor >> 1;
-
- // Calculate (field_order + 1) / 4
- if (!FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR) {
- FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR = field_modulus.add(1).div(4);
- }
-
- // In the paper they write "1. For j from 0 to h do the following..."
- // That is not necessary here because we are given the recovery_factor
- // step 1.1 Let x = r + jn
- // Here "j" is either 0 or 1
- var x;
- if (use_second_candidate_key) {
- x = signature_r.add(field_order);
- } else {
- x = signature_r;
- }
-
- // step 1.2 and 1.3 convert x to an elliptic curve point
- // Following formula in section 2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion
- var alpha = x.mul(x).mul(x).add(curve.a.mul(x)).add(curve.b).mod(field_modulus);
- var beta = alpha.powermodMontgomery(FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR, field_modulus);
-
- // If beta is even but y isn't or
- // if beta is odd and y is even
- // then subtract beta from the field_modulus
- var y;
- var beta_is_even = beta.mod(2).equals(0);
- if (beta_is_even && !compressed_point_y_coord_is_even ||
- !beta_is_even && compressed_point_y_coord_is_even) {
- y = beta;
- } else {
- y = field_modulus.sub(beta);
- }
-
- // generated_point_R is the point generated from x and y
- var generated_point_R = new sjcl.ecc.point(curve, x, y);
-
- // step 1.4 check that R is valid and R x field_order !== infinity
- // TODO: add check for R x field_order === infinity
- if (!generated_point_R.isValidPoint()) {
- throw new sjcl.exception.corrupt('point R. Not a valid point on the curve. Cannot recover public key');
- }
-
- // step 1.5 Compute e from M
- var message_e = sjcl.bn.fromBits(hash_bits);
- var message_e_neg = new sjcl.bn(0).sub(message_e).mod(field_order);
-
- // step 1.6 Compute Q = r^-1 (sR - eG)
- // console.log('r: ', signature_r);
- var signature_r_inv = signature_r.inverseMod(field_order);
- var public_key_point = generated_point_R.mult2(signature_s, message_e_neg, curve.G).mult(signature_r_inv);
-
- // Validate public key point
- if (!public_key_point.isValidPoint()) {
- throw new sjcl.exception.corrupt('public_key_point. Not a valid point on the curve. Cannot recover public key');
- }
-
- // Verify that this public key matches the signature
- if (!verify_raw(curve, message_e, signature_r, signature_s, public_key_point)) {
- throw new sjcl.exception.corrupt('cannot recover public key');
- }
-
- return public_key_point;
-
-};
-
-
-/**
- * Verify a signature given the raw components
- * using method defined in section 4.1.5:
- * "Alternative Verifying Operation"
- *
- * @param {sjcl.ecc.curve} curve
- * @param {sjcl.bn} e
- * @param {sjcl.bn} r
- * @param {sjcl.bn} s
- * @param {sjcl.ecc.point} public_key_point
- * @returns {Boolean}
- */
-function verify_raw(curve, e, r, s, public_key_point) {
-
- var field_order = curve.r;
-
- // Return false if r is out of bounds
- if ((new sjcl.bn(1)).greaterEquals(r) || r.greaterEquals(new sjcl.bn(field_order))) {
- return false;
- }
-
- // Return false if s is out of bounds
- if ((new sjcl.bn(1)).greaterEquals(s) || s.greaterEquals(new sjcl.bn(field_order))) {
- return false;
- }
-
- // Check that r = (u1 + u2)G
- // u1 = e x s^-1 (mod field_order)
- // u2 = r x s^-1 (mod field_order)
- var s_mod_inverse_field_order = s.inverseMod(field_order);
- var u1 = e.mul(s_mod_inverse_field_order).mod(field_order);
- var u2 = r.mul(s_mod_inverse_field_order).mod(field_order);
-
- var point_computed = curve.G.mult2(u1, u2, public_key_point);
-
- return r.equals(point_computed.x.mod(field_order));
-
-};
-
-
-sjcl.bn.prototype.jacobi = function (that) {
- var a = this;
- that = new sjcl.bn(that);
-
- if (that.sign() === -1) return;
-
- // 1. If a = 0 then return(0).
- if (a.equals(0)) { return 0; }
-
- // 2. If a = 1 then return(1).
- if (a.equals(1)) { return 1; }
-
- var s = 0;
-
- // 3. Write a = 2^e * a1, where a1 is odd.
- var e = 0;
- while (!a.testBit(e)) e++;
- var a1 = a.shiftRight(e);
-
- // 4. If e is even then set s ← 1.
- if ((e & 1) === 0) {
- s = 1;
- } else {
- var residue = that.modInt(8);
-
- if (residue === 1 || residue === 7) {
- // Otherwise set s ← 1 if n ≡ 1 or 7 (mod 8)
- s = 1;
- } else if (residue === 3 || residue === 5) {
- // Or set s ← −1 if n ≡ 3 or 5 (mod 8).
- s = -1;
- }
- }
-
- // 5. If n ≡ 3 (mod 4) and a1 ≡ 3 (mod 4) then set s ← −s.
- if (that.modInt(4) === 3 && a1.modInt(4) === 3) {
- s = -s;
- }
-
- if (a1.equals(1)) {
- return s;
- } else {
- return s * that.mod(a1).jacobi(a1);
- }
-};
diff --git a/package.json b/package.json
index 1f520960..d50e5d6f 100644
--- a/package.json
+++ b/package.json
@@ -37,9 +37,10 @@
"yargs": "~1.3.1"
},
"scripts": {
+ "postinstall": "node_modules/.bin/gulp concat-sjcl",
"build": "node_modules/.bin/gulp",
"pretest": "node_modules/.bin/gulp concat-sjcl",
- "test": "./node_modules/.bin/istanbul test -x build/sjcl.js -x src/js/jsbn/* ./node_modules/.bin/_mocha -- --reporter spec test/*-test.js",
+ "test": "./node_modules/.bin/istanbul test -x build/sjcl.js -x src/js/jsbn/* ./node_modules/mocha/bin/mocha -- --reporter spec test/*-test.js",
"coveralls": "cat ./coverage/lcov.info | ./node_modules/.bin/coveralls"
},
"repository": {