mirror of
https://github.com/Xahau/xahau.js.git
synced 2025-11-26 23:25:49 +00:00
[FEATURE] New Message class for sigs on arbitrary data
This includes supporting files that can sign arbitrary data with a signature that enables public key recovery. It also includes the PublicKeyValidator class that can verify whether a given public key is active for an account by looking in its AccountRoot.
This commit is contained in:
@@ -11,6 +11,7 @@ exports.Seed = require('./seed').Seed;
|
||||
exports.Meta = require('./meta').Meta;
|
||||
exports.SerializedObject = require('./serializedobject').SerializedObject;
|
||||
exports.RippleError = require('./rippleerror').RippleError;
|
||||
exports.Message = require('./message');
|
||||
|
||||
exports.binformat = require('./binformat');
|
||||
exports.utils = require('./utils');
|
||||
|
||||
194
src/js/ripple/message.js
Normal file
194
src/js/ripple/message.js
Normal file
@@ -0,0 +1,194 @@
|
||||
var async = require('async');
|
||||
var crypto = require('crypto');
|
||||
var sjcl = require('./utils').sjcl;
|
||||
var Remote = require('./remote').Remote;
|
||||
var Seed = require('./seed').Seed;
|
||||
var KeyPair = require('./keypair').KeyPair;
|
||||
var PublicKeyValidator = require('./pubkeyvalidator');
|
||||
var UInt160 = require('./uint160').UInt160;
|
||||
|
||||
// Message class (static)
|
||||
var Message = {};
|
||||
|
||||
Message.HASH_FUNCTION = sjcl.hash.sha512.hash;
|
||||
Message.MAGIC_BYTES = 'Ripple Signed Message:\n';
|
||||
|
||||
var REGEX_HEX = /^[0-9a-fA-F]+$/;
|
||||
var REGEX_BASE64 = /^([A-Za-z0-9\+]{4})*([A-Za-z0-9\+]{2}==)|([A-Za-z0-9\+]{3}=)?$/;
|
||||
|
||||
/**
|
||||
* Produce a Base64-encoded signature on the given message with
|
||||
* the string 'Ripple Signed Message:\n' prepended.
|
||||
*
|
||||
* Note that this signature uses the signing function that includes
|
||||
* a recovery_factor to be able to extract the public key from the signature
|
||||
* without having to pass the public key along with the signature.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @param {String} message
|
||||
* @param {sjcl.ecc.ecdsa.secretKey|Any format accepted by Seed.from_json} secret_key
|
||||
* @returns {Base64-encoded String} signature
|
||||
*/
|
||||
Message.signMessage = function(message, secret_key) {
|
||||
|
||||
return Message.signHash(Message.HASH_FUNCTION(Message.MAGIC_BYTES + message), secret_key);
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* Produce a Base64-encoded signature on the given hex-encoded hash.
|
||||
*
|
||||
* Note that this signature uses the signing function that includes
|
||||
* a recovery_factor to be able to extract the public key from the signature
|
||||
* without having to pass the public key along with the signature.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @param {bitArray|Hex-encoded String} hash
|
||||
* @param {sjcl.ecc.ecdsa.secretKey|Any format accepted by Seed.from_json} secret_key
|
||||
* @returns {Base64-encoded String} signature
|
||||
*/
|
||||
Message.signHash = function(hash, secret_key) {
|
||||
|
||||
if (typeof hash === 'string' && /^[0-9a-fA-F]+$/.test(hash)) {
|
||||
hash = sjcl.codec.hex.toBits(hash);
|
||||
}
|
||||
|
||||
if (typeof hash !== 'object' || hash.length <= 0 || typeof hash[0] !== 'number') {
|
||||
throw new Error('Hash must be a bitArray or hex-encoded string');
|
||||
}
|
||||
|
||||
if (!(secret_key instanceof sjcl.ecc.ecdsa.secretKey)) {
|
||||
secret_key = Seed.from_json(secret_key).get_key()._secret;
|
||||
}
|
||||
|
||||
var signature_bits = secret_key.signWithRecoverablePublicKey(hash);
|
||||
var signature_base64 = sjcl.codec.base64.fromBits(signature_bits);
|
||||
|
||||
return signature_base64;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Verify the signature on a given message.
|
||||
*
|
||||
* Note that this function is asynchronous.
|
||||
* The ripple-lib remote is used to check that the public
|
||||
* key extracted from the signature corresponds to one that is currently
|
||||
* active for the given account.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @param {String} data.message
|
||||
* @param {RippleAddress} data.account
|
||||
* @param {Base64-encoded String} data.signature
|
||||
* @param {ripple-lib Remote} remote
|
||||
* @param {Function} callback
|
||||
*
|
||||
* @callback callback
|
||||
* @param {Error} error
|
||||
* @param {boolean} is_valid true if the signature is valid, false otherwise
|
||||
*/
|
||||
Message.verifyMessageSignature = function(data, remote, callback) {
|
||||
|
||||
if (typeof data.message === 'string') {
|
||||
data.hash = Message.HASH_FUNCTION(Message.MAGIC_BYTES + data.message);
|
||||
} else {
|
||||
return callback(new Error('Data object must contain message field to verify signature'));
|
||||
}
|
||||
|
||||
return Message.verifyHashSignature(data, remote, callback);
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Verify the signature on a given hash.
|
||||
*
|
||||
* Note that this function is asynchronous.
|
||||
* The ripple-lib remote is used to check that the public
|
||||
* key extracted from the signature corresponds to one that is currently
|
||||
* active for the given account.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @param {bitArray|Hex-encoded String} data.hash
|
||||
* @param {RippleAddress} data.account
|
||||
* @param {Base64-encoded String} data.signature
|
||||
* @param {ripple-lib Remote} remote
|
||||
* @param {Function} callback
|
||||
*
|
||||
* @callback callback
|
||||
* @param {Error} error
|
||||
* @param {boolean} is_valid true if the signature is valid, false otherwise
|
||||
*/
|
||||
Message.verifyHashSignature = function(data, remote, callback) {
|
||||
|
||||
var hash,
|
||||
account,
|
||||
signature;
|
||||
|
||||
if(typeof callback !== 'function') {
|
||||
throw new Error('Must supply callback function');
|
||||
}
|
||||
|
||||
hash = data.hash;
|
||||
if (hash && typeof hash === 'string' && REGEX_HEX.test(hash)) {
|
||||
hash = sjcl.codec.hex.toBits(hash);
|
||||
}
|
||||
|
||||
if (typeof hash !== 'object' || hash.length <= 0 || typeof hash[0] !== 'number') {
|
||||
return callback(new Error('Hash must be a bitArray or hex-encoded string'));
|
||||
}
|
||||
|
||||
account = data.account || data.address;
|
||||
if (!account || !UInt160.from_json(account).is_valid()) {
|
||||
return callback(new Error('Account must be a valid ripple address'));
|
||||
}
|
||||
|
||||
signature = data.signature;
|
||||
if (typeof signature !== 'string' || !REGEX_BASE64.test(signature)) {
|
||||
return callback(new Error('Signature must be a Base64-encoded string'));
|
||||
}
|
||||
signature = sjcl.codec.base64.toBits(signature);
|
||||
|
||||
if (!(remote instanceof Remote) || remote.state !== 'online') {
|
||||
return callback(new Error('Must supply connected Remote to verify signature'));
|
||||
}
|
||||
|
||||
function recoverPublicKey (async_callback) {
|
||||
|
||||
var public_key;
|
||||
try {
|
||||
public_key = sjcl.ecc.ecdsa.publicKey.recoverFromSignature(hash, signature);
|
||||
} catch (err) {
|
||||
return async_callback(err);
|
||||
}
|
||||
async_callback(null, public_key);
|
||||
|
||||
};
|
||||
|
||||
function checkPublicKeyIsValid (public_key, async_callback) {
|
||||
|
||||
// Get hex-encoded public key
|
||||
var key_pair = new KeyPair();
|
||||
key_pair._pubkey = public_key;
|
||||
var public_key_hex = key_pair.to_hex_pub();
|
||||
|
||||
var public_key_validator = new PublicKeyValidator(remote);
|
||||
public_key_validator.validate(account, public_key_hex, async_callback);
|
||||
|
||||
};
|
||||
|
||||
var steps = [
|
||||
recoverPublicKey,
|
||||
checkPublicKeyIsValid
|
||||
];
|
||||
|
||||
async.waterfall(steps, callback);
|
||||
|
||||
};
|
||||
|
||||
module.exports = Message;
|
||||
104
src/js/ripple/pubkeyvalidator.js
Normal file
104
src/js/ripple/pubkeyvalidator.js
Normal file
@@ -0,0 +1,104 @@
|
||||
var async = require('async');
|
||||
var UInt160 = require('./uint160').UInt160;
|
||||
var sjcl = require('./utils').sjcl;
|
||||
var Base = require('./base').Base;
|
||||
|
||||
|
||||
/**
|
||||
* @constructor PubKeyValidator
|
||||
* @param {Remote} remote
|
||||
*/
|
||||
|
||||
function PubKeyValidator(remote) {
|
||||
|
||||
var self = this;
|
||||
|
||||
if (remote) {
|
||||
self._remote = remote;
|
||||
} else {
|
||||
throw(new Error('Must instantiate the PubKeyValidator with a ripple-lib Remote'));
|
||||
}
|
||||
|
||||
// Convert hex string to UInt160
|
||||
self._parsePublicKey = function(public_key) {
|
||||
|
||||
// Based on functions in /src/js/ripple/keypair.js
|
||||
function hexToUInt160(public_key) {
|
||||
var bits = sjcl.codec.hex.toBits(public_key);
|
||||
var hash = sjcl.hash.ripemd160.hash(sjcl.hash.sha256.hash(bits));
|
||||
var address = UInt160.from_bits(hash);
|
||||
address.set_version(Base.VER_ACCOUNT_ID);
|
||||
return address.to_json();
|
||||
}
|
||||
|
||||
if (UInt160.is_valid(public_key)) {
|
||||
return public_key;
|
||||
} else if (/^[0-9a-fA-F]+$/.test(public_key)) {
|
||||
return hexToUInt160(public_key);
|
||||
} else {
|
||||
throw(new Error('Public key is invalid. Must be a UInt160 or a hex string'));
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Check whether the public key is valid for the specified address.
|
||||
*
|
||||
* @param {String} address
|
||||
* @param {String} public_key
|
||||
* @param {Function} callback
|
||||
*
|
||||
* callback function is called with (err, is_valid), where is_valid
|
||||
* is a boolean indicating whether the public_key supplied is active
|
||||
*/
|
||||
|
||||
PubKeyValidator.prototype.validate = function(address, public_key, callback) {
|
||||
|
||||
var self = this;
|
||||
|
||||
var public_key_as_uint160;
|
||||
try {
|
||||
public_key_as_uint160 = self._parsePublicKey(public_key);
|
||||
} catch (e) {
|
||||
return callback(e);
|
||||
}
|
||||
|
||||
|
||||
function getAccountInfo(async_callback) {
|
||||
self._remote.account(address).getInfo(async_callback);
|
||||
};
|
||||
|
||||
function publicKeyIsValid(account_info_res, async_callback) {
|
||||
var account_info = account_info_res.account_data;
|
||||
|
||||
// Respond with true if the RegularKey is set and matches the given public key or
|
||||
// if the public key matches the account address and the lsfDisableMaster is not set
|
||||
if (account_info.RegularKey &&
|
||||
account_info.RegularKey === public_key_as_uint160) {
|
||||
|
||||
async_callback(null, true);
|
||||
|
||||
} else if (account_info.Account === public_key_as_uint160 &&
|
||||
((account_info.Flags & 0x00100000) === 0)) {
|
||||
|
||||
async_callback(null, true);
|
||||
|
||||
} else {
|
||||
|
||||
async_callback(null, false);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
var steps = [
|
||||
getAccountInfo,
|
||||
publicKeyIsValid
|
||||
];
|
||||
|
||||
async.waterfall(steps, callback);
|
||||
|
||||
};
|
||||
|
||||
module.exports = PubKeyValidator;
|
||||
83
src/js/sjcl-custom/sjcl-ecc-pointextras.js
Normal file
83
src/js/sjcl-custom/sjcl-ecc-pointextras.js
Normal file
@@ -0,0 +1,83 @@
|
||||
/**
|
||||
* Check that the point is valid based on the method described in
|
||||
* SEC 1: Elliptic Curve Cryptography, section 3.2.2.1:
|
||||
* Elliptic Curve Public Key Validation Primitive
|
||||
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
||||
*
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
sjcl.ecc.point.prototype.isValidPoint = function() {
|
||||
|
||||
var self = this;
|
||||
|
||||
var field_modulus = self.curve.field.modulus;
|
||||
|
||||
if (self.isIdentity) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check that coordinatres are in bounds
|
||||
// Return false if x < 1 or x > (field_modulus - 1)
|
||||
if (((new sjcl.bn(1).greaterEquals(self.x)) &&
|
||||
!self.x.equals(1)) ||
|
||||
(self.x.greaterEquals(field_modulus.sub(1))) &&
|
||||
!self.x.equals(1)) {
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Return false if y < 1 or y > (field_modulus - 1)
|
||||
if (((new sjcl.bn(1).greaterEquals(self.y)) &&
|
||||
!self.y.equals(1)) ||
|
||||
(self.y.greaterEquals(field_modulus.sub(1))) &&
|
||||
!self.y.equals(1)) {
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!self.isOnCurve()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// TODO check to make sure point is a scalar multiple of base_point
|
||||
|
||||
return true;
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* Check that the point is on the curve
|
||||
*
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
sjcl.ecc.point.prototype.isOnCurve = function() {
|
||||
|
||||
var self = this;
|
||||
|
||||
var field_order = self.curve.r;
|
||||
var component_a = self.curve.a;
|
||||
var component_b = self.curve.b;
|
||||
var field_modulus = self.curve.field.modulus;
|
||||
|
||||
var y_squared_mod_field_order = self.y.mul(self.y).mod(field_modulus);
|
||||
var x_cubed_plus_ax_plus_b = self.x.mul(self.x).mul(self.x).add(component_a.mul(self.x)).add(component_b).mod(field_modulus);
|
||||
|
||||
return y_squared_mod_field_order.equals(x_cubed_plus_ax_plus_b);
|
||||
|
||||
};
|
||||
|
||||
|
||||
sjcl.ecc.point.prototype.toString = function() {
|
||||
return '(' +
|
||||
this.x.toString() + ', ' +
|
||||
this.y.toString() +
|
||||
')';
|
||||
};
|
||||
|
||||
sjcl.ecc.pointJac.prototype.toString = function() {
|
||||
return '(' +
|
||||
this.x.toString() + ', ' +
|
||||
this.y.toString() + ', ' +
|
||||
this.z.toString() +
|
||||
')';
|
||||
};
|
||||
308
src/js/sjcl-custom/sjcl-ecdsa-recoverablepublickey.js
Normal file
308
src/js/sjcl-custom/sjcl-ecdsa-recoverablepublickey.js
Normal file
@@ -0,0 +1,308 @@
|
||||
/**
|
||||
* This module uses the public key recovery method
|
||||
* described in SEC 1: Elliptic Curve Cryptography,
|
||||
* section 4.1.6, "Public Key Recovery Operation".
|
||||
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
||||
*
|
||||
* Implementation based on:
|
||||
* https://github.com/bitcoinjs/bitcoinjs-lib/blob/89cf731ac7309b4f98994e3b4b67b7226020181f/src/ecdsa.js
|
||||
*/
|
||||
|
||||
// Defined here so that this value only needs to be calculated once
|
||||
var FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR;
|
||||
|
||||
/**
|
||||
* Sign the given hash such that the public key, prepending an extra byte
|
||||
* so that the public key will be recoverable from the signature
|
||||
*
|
||||
* @param {bitArray} hash
|
||||
* @param {Number} paranoia
|
||||
* @returns {bitArray} Signature formatted as bitArray
|
||||
*/
|
||||
sjcl.ecc.ecdsa.secretKey.prototype.signWithRecoverablePublicKey = function(hash, paranoia, k_for_testing) {
|
||||
|
||||
var self = this;
|
||||
|
||||
// Convert hash to bits and determine encoding for output
|
||||
var hash_bits;
|
||||
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
|
||||
hash_bits = hash;
|
||||
} else {
|
||||
throw new sjcl.exception.invalid('hash. Must be a bitArray');
|
||||
}
|
||||
|
||||
// Sign hash with standard, canonicalized method
|
||||
var standard_signature = self.sign(hash_bits, paranoia, k_for_testing);
|
||||
var canonical_signature = self.canonicalizeSignature(standard_signature);
|
||||
|
||||
// Extract r and s signature components from canonical signature
|
||||
var r_and_s = getRandSFromSignature(self._curve, canonical_signature);
|
||||
|
||||
// Rederive public key
|
||||
var public_key = self._curve.G.mult(sjcl.bn.fromBits(self.get()));
|
||||
|
||||
// Determine recovery factor based on which possible value
|
||||
// returns the correct public key
|
||||
var recovery_factor = calculateRecoveryFactor(self._curve, r_and_s.r, r_and_s.s, hash_bits, public_key);
|
||||
|
||||
// Prepend recovery_factor to signature and encode in DER
|
||||
// The value_to_prepend should be 4 bytes total
|
||||
var value_to_prepend = recovery_factor + 27;
|
||||
|
||||
var final_signature_bits = sjcl.bitArray.concat([value_to_prepend], canonical_signature);
|
||||
|
||||
// Return value in bits
|
||||
return final_signature_bits;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Recover the public key from a signature created with the
|
||||
* signWithRecoverablePublicKey method in this module
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @param {bitArray} hash
|
||||
* @param {bitArray} signature
|
||||
* @param {sjcl.ecc.curve} [sjcl.ecc.curves['c256']] curve
|
||||
* @returns {sjcl.ecc.ecdsa.publicKey} Public key
|
||||
*/
|
||||
sjcl.ecc.ecdsa.publicKey.recoverFromSignature = function(hash, signature, curve) {
|
||||
|
||||
var self = this;
|
||||
|
||||
if (!signature || signature instanceof sjcl.ecc.curve) {
|
||||
throw new sjcl.exception.invalid('must supply hash and signature to recover public key');
|
||||
}
|
||||
|
||||
if (!curve) {
|
||||
curve = sjcl.ecc.curves['c256'];
|
||||
}
|
||||
|
||||
// Convert hash to bits and determine encoding for output
|
||||
var hash_bits;
|
||||
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
|
||||
hash_bits = hash;
|
||||
} else {
|
||||
throw new sjcl.exception.invalid('hash. Must be a bitArray');
|
||||
}
|
||||
|
||||
var signature_bits;
|
||||
if (typeof signature === 'object' && signature.length > 0 && typeof signature[0] === 'number') {
|
||||
signature_bits = signature;
|
||||
} else {
|
||||
throw new sjcl.exception.invalid('signature. Must be a bitArray');
|
||||
}
|
||||
|
||||
// Extract recovery_factor from first 4 bytes
|
||||
var recovery_factor = signature_bits[0] - 27;
|
||||
|
||||
if (recovery_factor < 0 || recovery_factor > 3) {
|
||||
throw new sjcl.exception.invalid('signature. Signature must be generated with algorithm ' +
|
||||
'that prepends the recovery factor in order to recover the public key');
|
||||
}
|
||||
|
||||
// Separate r and s values
|
||||
var r_and_s = getRandSFromSignature(curve, signature_bits.slice(1));
|
||||
var signature_r = r_and_s.r;
|
||||
var signature_s = r_and_s.s;
|
||||
|
||||
// Recover public key using recovery_factor
|
||||
var recovered_public_key_point = recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor);
|
||||
var recovered_public_key = new sjcl.ecc.ecdsa.publicKey(curve, recovered_public_key_point);
|
||||
|
||||
return recovered_public_key;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Retrieve the r and s components of a signature
|
||||
*
|
||||
* @param {sjcl.ecc.curve} curve
|
||||
* @param {bitArray} signature
|
||||
* @returns {Object} Object with 'r' and 's' fields each as an sjcl.bn
|
||||
*/
|
||||
function getRandSFromSignature(curve, signature) {
|
||||
|
||||
var r_length = curve.r.bitLength();
|
||||
|
||||
return {
|
||||
r: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, 0, r_length)),
|
||||
s: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, r_length, sjcl.bitArray.bitLength(signature)))
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Determine the recovery factor by trying all four
|
||||
* possibilities and figuring out which results in the
|
||||
* correct public key
|
||||
*
|
||||
* @param {sjcl.ecc.curve} curve
|
||||
* @param {sjcl.bn} r
|
||||
* @param {sjcl.bn} s
|
||||
* @param {bitArray} hash_bits
|
||||
* @param {sjcl.ecc.point} original_public_key_point
|
||||
* @returns {Number, 0-3} Recovery factor
|
||||
*/
|
||||
function calculateRecoveryFactor(curve, r, s, hash_bits, original_public_key_point) {
|
||||
|
||||
var original_public_key_point_bits = original_public_key_point.toBits();
|
||||
|
||||
// TODO: verify that it is possible for the recovery_factor to be 2 or 3,
|
||||
// we may only need 1 bit because the canonical signature might remove the
|
||||
// possibility of us needing to "use the second candidate key"
|
||||
for (var possible_factor = 0; possible_factor < 4; possible_factor++) {
|
||||
|
||||
var resulting_public_key_point;
|
||||
try {
|
||||
resulting_public_key_point = recoverPublicKeyPointFromSignature(curve, r, s, hash_bits, possible_factor);
|
||||
} catch (err) {
|
||||
// console.log(err, err.stack);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (sjcl.bitArray.equal(resulting_public_key_point.toBits(), original_public_key_point_bits)) {
|
||||
return possible_factor;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
throw new sjcl.exception.bug('unable to calculate recovery factor from signature');
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Recover the public key from the signature.
|
||||
*
|
||||
* @param {sjcl.ecc.curve} curve
|
||||
* @param {sjcl.bn} r
|
||||
* @param {sjcl.bn} s
|
||||
* @param {bitArray} hash_bits
|
||||
* @param {Number, 0-3} recovery_factor
|
||||
* @returns {sjcl.point} Public key corresponding to signature
|
||||
*/
|
||||
function recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor) {
|
||||
|
||||
var field_order = curve.r;
|
||||
var field_modulus = curve.field.modulus;
|
||||
|
||||
// Reduce the recovery_factor to the two bits used
|
||||
recovery_factor = recovery_factor & 3;
|
||||
|
||||
// The less significant bit specifies whether the y coordinate
|
||||
// of the compressed point is even or not.
|
||||
var compressed_point_y_coord_is_even = recovery_factor & 1;
|
||||
|
||||
// The more significant bit specifies whether we should use the
|
||||
// first or second candidate key.
|
||||
var use_second_candidate_key = recovery_factor >> 1;
|
||||
|
||||
// Calculate (field_order + 1) / 4
|
||||
if (!FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR) {
|
||||
FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR = field_modulus.add(1).div(4);
|
||||
}
|
||||
|
||||
// In the paper they write "1. For j from 0 to h do the following..."
|
||||
// That is not necessary here because we are given the recovery_factor
|
||||
// step 1.1 Let x = r + jn
|
||||
// Here "j" is either 0 or 1
|
||||
var x;
|
||||
if (use_second_candidate_key) {
|
||||
x = signature_r.add(field_order);
|
||||
} else {
|
||||
x = signature_r;
|
||||
}
|
||||
|
||||
// step 1.2 and 1.3 convert x to an elliptic curve point
|
||||
// Following formula in section 2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion
|
||||
var alpha = x.mul(x).mul(x).add(curve.a.mul(x)).add(curve.b).mod(field_modulus);
|
||||
var beta = alpha.powermodMontgomery(FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR, field_modulus);
|
||||
|
||||
// If beta is even but y isn't or
|
||||
// if beta is odd and y is even
|
||||
// then subtract beta from the field_modulus
|
||||
var y;
|
||||
var beta_is_even = beta.mod(2).equals(0);
|
||||
if (beta_is_even && !compressed_point_y_coord_is_even ||
|
||||
!beta_is_even && compressed_point_y_coord_is_even) {
|
||||
y = beta;
|
||||
} else {
|
||||
y = field_modulus.sub(beta);
|
||||
}
|
||||
|
||||
// generated_point_R is the point generated from x and y
|
||||
var generated_point_R = new sjcl.ecc.point(curve, x, y);
|
||||
|
||||
// step 1.4 check that R is valid and R x field_order !== infinity
|
||||
// TODO: add check for R x field_order === infinity
|
||||
if (!generated_point_R.isValidPoint()) {
|
||||
throw new sjcl.exception.corrupt('point R. Not a valid point on the curve. Cannot recover public key');
|
||||
}
|
||||
|
||||
// step 1.5 Compute e from M
|
||||
var message_e = sjcl.bn.fromBits(hash_bits);
|
||||
var message_e_neg = new sjcl.bn(0).sub(message_e).mod(field_order);
|
||||
|
||||
// step 1.6 Compute Q = r^-1 (sR - eG)
|
||||
// console.log('r: ', signature_r);
|
||||
var signature_r_inv = signature_r.inverseMod(field_order);
|
||||
var public_key_point = generated_point_R.mult2(signature_s, message_e_neg, curve.G).mult(signature_r_inv);
|
||||
|
||||
// Validate public key point
|
||||
if (!public_key_point.isValidPoint()) {
|
||||
throw new sjcl.exception.corrupt('public_key_point. Not a valid point on the curve. Cannot recover public key');
|
||||
}
|
||||
|
||||
// Verify that this public key matches the signature
|
||||
if (!verify_raw(curve, message_e, signature_r, signature_s, public_key_point)) {
|
||||
throw new sjcl.exception.corrupt('cannot recover public key');
|
||||
}
|
||||
|
||||
return public_key_point;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Verify a signature given the raw components
|
||||
* using method defined in section 4.1.5:
|
||||
* "Alternative Verifying Operation"
|
||||
*
|
||||
* @param {sjcl.ecc.curve} curve
|
||||
* @param {sjcl.bn} e
|
||||
* @param {sjcl.bn} r
|
||||
* @param {sjcl.bn} s
|
||||
* @param {sjcl.ecc.point} public_key_point
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
function verify_raw(curve, e, r, s, public_key_point) {
|
||||
|
||||
var field_order = curve.r;
|
||||
|
||||
// Return false if r is out of bounds
|
||||
if ((new sjcl.bn(1)).greaterEquals(r) || r.greaterEquals(new sjcl.bn(field_order))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Return false if s is out of bounds
|
||||
if ((new sjcl.bn(1)).greaterEquals(s) || s.greaterEquals(new sjcl.bn(field_order))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check that r = (u1 + u2)G
|
||||
// u1 = e x s^-1 (mod field_order)
|
||||
// u2 = r x s^-1 (mod field_order)
|
||||
var s_mod_inverse_field_order = s.inverseMod(field_order);
|
||||
var u1 = e.mul(s_mod_inverse_field_order).mod(field_order);
|
||||
var u2 = r.mul(s_mod_inverse_field_order).mod(field_order);
|
||||
|
||||
var point_computed = curve.G.mult2(u1, u2, public_key_point);
|
||||
|
||||
return r.equals(point_computed.x.mod(field_order));
|
||||
|
||||
};
|
||||
|
||||
@@ -62,7 +62,7 @@ sjcl.ecc.pointJac.prototype.doubl = function () {
|
||||
var f = e.square();
|
||||
var x = f.sub(d.copy().doubleM());
|
||||
var y = e.mul(d.sub(x)).subM(c.doubleM().doubleM().doubleM());
|
||||
var z = this.y.mul(this.z).doubleM();
|
||||
var z = this.z.mul(this.y).doubleM();
|
||||
return new sjcl.ecc.pointJac(this.curve, x, y, z);
|
||||
};
|
||||
|
||||
|
||||
@@ -1,9 +1,21 @@
|
||||
sjcl.ecc.ecdsa.secretKey.prototype.sign = function(hash, paranoia) {
|
||||
sjcl.ecc.ecdsa.secretKey.prototype.sign = function(hash, paranoia, k_for_testing) {
|
||||
var R = this._curve.r,
|
||||
l = R.bitLength(),
|
||||
k = sjcl.bn.random(R.sub(1), paranoia).add(1),
|
||||
r = this._curve.G.mult(k).x.mod(R),
|
||||
s = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)).mul(k.inverseMod(R)).mod(R);
|
||||
l = R.bitLength();
|
||||
|
||||
// k_for_testing should ONLY BE SPECIFIED FOR TESTING
|
||||
// specifying it will make the signature INSECURE
|
||||
var k;
|
||||
if (typeof k_for_testing === 'object' && k_for_testing.length > 0 && typeof k_for_testing[0] === 'number') {
|
||||
k = k_for_testing;
|
||||
} else if (typeof k_for_testing === 'string' && /^[0-9a-fA-F]+$/.test(k_for_testing)) {
|
||||
k = sjcl.bn.fromBits(sjcl.codec.hex.toBits(k_for_testing));
|
||||
} else {
|
||||
// This is the only option that should be used in production
|
||||
k = sjcl.bn.random(R.sub(1), paranoia).add(1);
|
||||
}
|
||||
|
||||
var r = this._curve.G.mult(k).x.mod(R);
|
||||
var s = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)).mul(k.inverseMod(R)).mod(R);
|
||||
|
||||
return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user