Files
rippled/include/xrpl/basics/Number.h
Ed Hennis ffc0d26d20 Merge remote-tracking branch 'mywork/ximinez/lending-number' into ximinez/lending-XLS-66
* mywork/ximinez/lending-number:
  Add a distinction between a "valid" and a "representable" Number
  chore: Point xrpld symlink to rippled (6012)
  Catch up the consequences of Number changes
  Fix build error - avoid copy
  Add integer enforcement when converting to XRP/MPTAmount to Number
  Make all STNumber fields "soeDEFAULT"
  Add optional enforcement of valid integer range to Number
2025-11-08 17:00:35 -05:00

513 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef XRPL_BASICS_NUMBER_H_INCLUDED
#define XRPL_BASICS_NUMBER_H_INCLUDED
#include <cstdint>
#include <limits>
#include <ostream>
#include <string>
namespace ripple {
class Number;
std::string
to_string(Number const& amount);
template <typename T>
constexpr bool
isPowerOfTen(T value)
{
while (value >= 10 && value % 10 == 0)
value /= 10;
return value == 1;
}
class Number
{
public:
/** Describes whether and how to enforce this number as an integer.
*
* - none: No enforcement. The value may vary freely. This is the default.
* - compatible: If the absolute value is greater than maxIntValue, valid()
* will return false. Needed for backward compatibility with XRP used in
* AMMs, and available for functions that will do their own checking. This
* is the default for automatic conversions from XRPAmount to Number.
* - weak: Like compatible, plus, if the value is unrepresentable (larger
* than maxMantissa), assignment and other operations will throw.
* - strong: Like weak, plus, if the absolute value is invalid (larger than
* maxIntValue), assignment and other operations will throw. This is the
* defalut for automatic conversions from MPTAmount to Number.
*/
enum EnforceInteger { none, compatible, weak, strong };
private:
using rep = std::int64_t;
rep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
// The enforcement setting is not serialized, and does not affect the
// ledger. If not "none", the value is checked to be within the valid
// integer range. See the enum description for more detail.
EnforceInteger enforceInteger_ = none;
public:
// The range for the mantissa when normalized
constexpr static rep minMantissa = 1'000'000'000'000'000LL;
static_assert(isPowerOfTen(minMantissa));
constexpr static rep maxMantissa = minMantissa * 10 - 1;
static_assert(maxMantissa == 9'999'999'999'999'999LL);
constexpr static rep maxIntValue = maxMantissa / 100;
static_assert(maxIntValue == 99'999'999'999'999LL);
// The range for the exponent when normalized
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
struct unchecked
{
explicit unchecked() = default;
};
explicit constexpr Number() = default;
Number(rep mantissa, EnforceInteger enforce = none);
explicit Number(rep mantissa, int exponent, EnforceInteger enforce = none);
explicit constexpr Number(rep mantissa, int exponent, unchecked) noexcept;
constexpr Number(Number const& other) = default;
constexpr Number(Number&& other) = default;
~Number() = default;
constexpr Number&
operator=(Number const& other);
constexpr Number&
operator=(Number&& other);
constexpr rep
mantissa() const noexcept;
constexpr int
exponent() const noexcept;
void
setIntegerEnforcement(EnforceInteger enforce);
EnforceInteger
integerEnforcement() const noexcept;
bool
valid() const noexcept;
bool
representable() const noexcept;
/// Combines setIntegerEnforcement(EnforceInteger) and valid()
bool
valid(EnforceInteger enforce);
/// Because this function is const, it should only be used for one-off
/// checks
bool
valid(EnforceInteger enforce) const;
constexpr Number
operator+() const noexcept;
constexpr Number
operator-() const noexcept;
Number&
operator++();
Number
operator++(int);
Number&
operator--();
Number
operator--(int);
Number&
operator+=(Number const& x);
Number&
operator-=(Number const& x);
Number&
operator*=(Number const& x);
Number&
operator/=(Number const& x);
static constexpr Number
min() noexcept;
static constexpr Number
max() noexcept;
static constexpr Number
lowest() noexcept;
/** Conversions to Number are implicit and conversions away from Number
* are explicit. This design encourages and facilitates the use of Number
* as the preferred type for floating point arithmetic as it makes
* "mixed mode" more convenient, e.g. MPTAmount + Number.
*/
explicit
operator rep() const; // round to nearest, even on tie
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
}
friend constexpr bool
operator!=(Number const& x, Number const& y) noexcept
{
return !(x == y);
}
friend constexpr bool
operator<(Number const& x, Number const& y) noexcept
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
if (lneg != rneg)
return lneg;
// Both have same sign and the left is zero: the right must be
// greater than 0.
if (x.mantissa_ == 0)
return y.mantissa_ > 0;
// Both have same sign, the right is zero and the left is non-zero.
if (y.mantissa_ == 0)
return false;
// Both have the same sign, compare by exponents:
if (x.exponent_ > y.exponent_)
return lneg;
if (x.exponent_ < y.exponent_)
return !lneg;
// If equal exponents, compare mantissas
return x.mantissa_ < y.mantissa_;
}
/** Return the sign of the amount */
constexpr int
signum() const noexcept
{
return (mantissa_ < 0) ? -1 : (mantissa_ ? 1 : 0);
}
Number
truncate() const noexcept;
friend constexpr bool
operator>(Number const& x, Number const& y) noexcept
{
return y < x;
}
friend constexpr bool
operator<=(Number const& x, Number const& y) noexcept
{
return !(y < x);
}
friend constexpr bool
operator>=(Number const& x, Number const& y) noexcept
{
return !(x < y);
}
friend std::ostream&
operator<<(std::ostream& os, Number const& x)
{
return os << to_string(x);
}
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
getround();
// Returns previously set mode
static rounding_mode
setround(rounding_mode mode);
private:
static thread_local rounding_mode mode_;
void
checkInteger(char const* what) const;
void
normalize();
constexpr bool
isnormal() const noexcept;
class Guard;
};
constexpr static Number numZero{};
inline constexpr Number::Number(rep mantissa, int exponent, unchecked) noexcept
: mantissa_{mantissa}, exponent_{exponent}
{
}
inline Number::Number(rep mantissa, int exponent, EnforceInteger enforce)
: mantissa_{mantissa}, exponent_{exponent}, enforceInteger_(enforce)
{
normalize();
checkInteger("Number::Number integer overflow");
}
inline Number::Number(rep mantissa, EnforceInteger enforce)
: Number{mantissa, 0, enforce}
{
}
constexpr Number&
Number::operator=(Number const& other)
{
if (this != &other)
{
mantissa_ = other.mantissa_;
exponent_ = other.exponent_;
enforceInteger_ = std::max(enforceInteger_, other.enforceInteger_);
checkInteger("Number::operator= integer overflow");
}
return *this;
}
constexpr Number&
Number::operator=(Number&& other)
{
if (this != &other)
{
// std::move doesn't really do anything for these types, but
// this is future-proof in case the types ever change
mantissa_ = std::move(other.mantissa_);
exponent_ = std::move(other.exponent_);
if (other.enforceInteger_ > enforceInteger_)
enforceInteger_ = std::move(other.enforceInteger_);
checkInteger("Number::operator= integer overflow");
}
return *this;
}
inline constexpr Number::rep
Number::mantissa() const noexcept
{
return mantissa_;
}
inline constexpr int
Number::exponent() const noexcept
{
return exponent_;
}
inline void
Number::setIntegerEnforcement(EnforceInteger enforce)
{
enforceInteger_ = enforce;
checkInteger("Number::setIntegerEnforcement integer overflow");
}
inline Number::EnforceInteger
Number::integerEnforcement() const noexcept
{
return enforceInteger_;
}
inline constexpr Number
Number::operator+() const noexcept
{
return *this;
}
inline constexpr Number
Number::operator-() const noexcept
{
auto x = *this;
x.mantissa_ = -x.mantissa_;
return x;
}
inline Number&
Number::operator++()
{
*this += Number{1000000000000000, -15, unchecked{}};
return *this;
}
inline Number
Number::operator++(int)
{
auto x = *this;
++(*this);
return x;
}
inline Number&
Number::operator--()
{
*this -= Number{1000000000000000, -15, unchecked{}};
return *this;
}
inline Number
Number::operator--(int)
{
auto x = *this;
--(*this);
return x;
}
inline Number&
Number::operator-=(Number const& x)
{
return *this += -x;
}
inline Number
operator+(Number const& x, Number const& y)
{
auto z = x;
z += y;
return z;
}
inline Number
operator-(Number const& x, Number const& y)
{
auto z = x;
z -= y;
return z;
}
inline Number
operator*(Number const& x, Number const& y)
{
auto z = x;
z *= y;
return z;
}
inline Number
operator/(Number const& x, Number const& y)
{
auto z = x;
z /= y;
return z;
}
inline constexpr Number
Number::min() noexcept
{
return Number{minMantissa, minExponent, unchecked{}};
}
inline constexpr Number
Number::max() noexcept
{
return Number{maxMantissa, maxExponent, unchecked{}};
}
inline constexpr Number
Number::lowest() noexcept
{
return -Number{maxMantissa, maxExponent, unchecked{}};
}
inline constexpr bool
Number::isnormal() const noexcept
{
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
return minMantissa <= abs_m && abs_m <= maxMantissa &&
minExponent <= exponent_ && exponent_ <= maxExponent;
}
inline constexpr Number
abs(Number x) noexcept
{
if (x < Number{})
x = -x;
return x;
}
// Returns f^n
// Uses a log_2(n) number of multiplications
Number
power(Number const& f, unsigned n);
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the root of the polynomial g(x) = x^d - f
Number
root(Number f, unsigned d);
Number
root2(Number f);
// Returns f^(n/d)
Number
power(Number const& f, unsigned n, unsigned d);
// Return 0 if abs(x) < limit, else returns x
inline constexpr Number
squelch(Number const& x, Number const& limit) noexcept
{
if (abs(x) < limit)
return Number{};
return x;
}
class saveNumberRoundMode
{
Number::rounding_mode mode_;
public:
~saveNumberRoundMode()
{
Number::setround(mode_);
}
explicit saveNumberRoundMode(Number::rounding_mode mode) noexcept
: mode_{mode}
{
}
saveNumberRoundMode(saveNumberRoundMode const&) = delete;
saveNumberRoundMode&
operator=(saveNumberRoundMode const&) = delete;
};
// saveNumberRoundMode doesn't do quite enough for us. What we want is a
// Number::RoundModeGuard that sets the new mode and restores the old mode
// when it leaves scope. Since Number doesn't have that facility, we'll
// build it here.
class NumberRoundModeGuard
{
saveNumberRoundMode saved_;
public:
explicit NumberRoundModeGuard(Number::rounding_mode mode) noexcept
: saved_{Number::setround(mode)}
{
}
NumberRoundModeGuard(NumberRoundModeGuard const&) = delete;
NumberRoundModeGuard&
operator=(NumberRoundModeGuard const&) = delete;
};
} // namespace ripple
#endif // XRPL_BASICS_NUMBER_H_INCLUDED