Files
rippled/include/xrpl/beast/container/detail/aged_unordered_container.h
2025-10-23 11:04:30 -04:00

3432 lines
79 KiB
C++

#ifndef BEAST_CONTAINER_DETAIL_AGED_UNORDERED_CONTAINER_H_INCLUDED
#define BEAST_CONTAINER_DETAIL_AGED_UNORDERED_CONTAINER_H_INCLUDED
#include <xrpl/beast/clock/abstract_clock.h>
#include <xrpl/beast/container/aged_container.h>
#include <xrpl/beast/container/detail/aged_associative_container.h>
#include <xrpl/beast/container/detail/aged_container_iterator.h>
#include <xrpl/beast/container/detail/empty_base_optimization.h>
#include <boost/intrusive/list.hpp>
#include <boost/intrusive/unordered_set.hpp>
#include <algorithm>
#include <cmath>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
/*
TODO
- Add constructor variations that take a bucket count
- Review for noexcept and exception guarantees
- Call the safe version of is_permutation that takes 4 iterators
*/
#ifndef BEAST_NO_CXX14_IS_PERMUTATION
#define BEAST_NO_CXX14_IS_PERMUTATION 1
#endif
namespace beast {
namespace detail {
/** Associative container where each element is also indexed by time.
This container mirrors the interface of the standard library unordered
associative containers, with the addition that each element is associated
with a `when` `time_point` which is obtained from the value of the clock's
`now`. The function `touch` updates the time for an element to the current
time as reported by the clock.
An extra set of iterator types and member functions are provided in the
`chronological` memberspace that allow traversal in temporal or reverse
temporal order. This container is useful as a building block for caches
whose items expire after a certain amount of time. The chronological
iterators allow for fully customizable expiration strategies.
@see aged_unordered_set, aged_unordered_multiset
@see aged_unordered_map, aged_unordered_multimap
*/
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock = std::chrono::steady_clock,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<
typename std::conditional<IsMap, std::pair<Key const, T>, Key>::type>>
class aged_unordered_container
{
public:
using clock_type = abstract_clock<Clock>;
using time_point = typename clock_type::time_point;
using duration = typename clock_type::duration;
using key_type = Key;
using mapped_type = T;
using value_type =
typename std::conditional<IsMap, std::pair<Key const, T>, Key>::type;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
// Introspection (for unit tests)
using is_unordered = std::true_type;
using is_multi = std::integral_constant<bool, IsMulti>;
using is_map = std::integral_constant<bool, IsMap>;
private:
static Key const&
extract(value_type const& value)
{
return aged_associative_container_extract_t<IsMap>()(value);
}
// VFALCO TODO hoist to remove template argument dependencies
struct element
: boost::intrusive::unordered_set_base_hook<
boost::intrusive::link_mode<boost::intrusive::normal_link>>,
boost::intrusive::list_base_hook<
boost::intrusive::link_mode<boost::intrusive::normal_link>>
{
// Stash types here so the iterator doesn't
// need to see the container declaration.
struct stashed
{
explicit stashed() = default;
using value_type = typename aged_unordered_container::value_type;
using time_point = typename aged_unordered_container::time_point;
};
element(time_point const& when_, value_type const& value_)
: value(value_), when(when_)
{
}
element(time_point const& when_, value_type&& value_)
: value(std::move(value_)), when(when_)
{
}
template <
class... Args,
class = typename std::enable_if<
std::is_constructible<value_type, Args...>::value>::type>
element(time_point const& when_, Args&&... args)
: value(std::forward<Args>(args)...), when(when_)
{
}
value_type value;
time_point when;
};
// VFALCO TODO hoist to remove template argument dependencies
class ValueHash : public Hash
{
public:
using argument_type = element;
using result_type = size_t;
ValueHash()
{
}
ValueHash(Hash const& h) : Hash(h)
{
}
std::size_t
operator()(element const& e) const
{
return Hash::operator()(extract(e.value));
}
Hash&
hash_function()
{
return *this;
}
Hash const&
hash_function() const
{
return *this;
}
};
// Compares value_type against element, used in find/insert_check
// VFALCO TODO hoist to remove template argument dependencies
class KeyValueEqual : public KeyEqual
{
public:
using first_argument_type = Key;
using second_argument_type = element;
using result_type = bool;
KeyValueEqual()
{
}
KeyValueEqual(KeyEqual const& keyEqual) : KeyEqual(keyEqual)
{
}
bool
operator()(Key const& k, element const& e) const
{
return KeyEqual::operator()(k, extract(e.value));
}
bool
operator()(element const& e, Key const& k) const
{
return KeyEqual::operator()(extract(e.value), k);
}
bool
operator()(element const& lhs, element const& rhs) const
{
return KeyEqual::operator()(extract(lhs.value), extract(rhs.value));
}
KeyEqual&
key_eq()
{
return *this;
}
KeyEqual const&
key_eq() const
{
return *this;
}
};
using list_type = typename boost::intrusive::
make_list<element, boost::intrusive::constant_time_size<false>>::type;
using cont_type = typename std::conditional<
IsMulti,
typename boost::intrusive::make_unordered_multiset<
element,
boost::intrusive::constant_time_size<true>,
boost::intrusive::hash<ValueHash>,
boost::intrusive::equal<KeyValueEqual>,
boost::intrusive::cache_begin<true>>::type,
typename boost::intrusive::make_unordered_set<
element,
boost::intrusive::constant_time_size<true>,
boost::intrusive::hash<ValueHash>,
boost::intrusive::equal<KeyValueEqual>,
boost::intrusive::cache_begin<true>>::type>::type;
using bucket_type = typename cont_type::bucket_type;
using bucket_traits = typename cont_type::bucket_traits;
using ElementAllocator = typename std::allocator_traits<
Allocator>::template rebind_alloc<element>;
using ElementAllocatorTraits = std::allocator_traits<ElementAllocator>;
using BucketAllocator = typename std::allocator_traits<
Allocator>::template rebind_alloc<element>;
using BucketAllocatorTraits = std::allocator_traits<BucketAllocator>;
class config_t
: private ValueHash,
private KeyValueEqual,
private beast::detail::empty_base_optimization<ElementAllocator>
{
public:
explicit config_t(clock_type& clock_) : clock(clock_)
{
}
config_t(clock_type& clock_, Hash const& hash)
: ValueHash(hash), clock(clock_)
{
}
config_t(clock_type& clock_, KeyEqual const& keyEqual)
: KeyValueEqual(keyEqual), clock(clock_)
{
}
config_t(clock_type& clock_, Allocator const& alloc_)
: beast::detail::empty_base_optimization<ElementAllocator>(alloc_)
, clock(clock_)
{
}
config_t(clock_type& clock_, Hash const& hash, KeyEqual const& keyEqual)
: ValueHash(hash), KeyValueEqual(keyEqual), clock(clock_)
{
}
config_t(clock_type& clock_, Hash const& hash, Allocator const& alloc_)
: ValueHash(hash)
, beast::detail::empty_base_optimization<ElementAllocator>(alloc_)
, clock(clock_)
{
}
config_t(
clock_type& clock_,
KeyEqual const& keyEqual,
Allocator const& alloc_)
: KeyValueEqual(keyEqual)
, beast::detail::empty_base_optimization<ElementAllocator>(alloc_)
, clock(clock_)
{
}
config_t(
clock_type& clock_,
Hash const& hash,
KeyEqual const& keyEqual,
Allocator const& alloc_)
: ValueHash(hash)
, KeyValueEqual(keyEqual)
, beast::detail::empty_base_optimization<ElementAllocator>(alloc_)
, clock(clock_)
{
}
config_t(config_t const& other)
: ValueHash(other.hash_function())
, KeyValueEqual(other.key_eq())
, beast::detail::empty_base_optimization<ElementAllocator>(
ElementAllocatorTraits::select_on_container_copy_construction(
other.alloc()))
, clock(other.clock)
{
}
config_t(config_t const& other, Allocator const& alloc)
: ValueHash(other.hash_function())
, KeyValueEqual(other.key_eq())
, beast::detail::empty_base_optimization<ElementAllocator>(alloc)
, clock(other.clock)
{
}
config_t(config_t&& other)
: ValueHash(std::move(other.hash_function()))
, KeyValueEqual(std::move(other.key_eq()))
, beast::detail::empty_base_optimization<ElementAllocator>(
std::move(other.alloc()))
, clock(other.clock)
{
}
config_t(config_t&& other, Allocator const& alloc)
: ValueHash(std::move(other.hash_function()))
, KeyValueEqual(std::move(other.key_eq()))
, beast::detail::empty_base_optimization<ElementAllocator>(alloc)
, clock(other.clock)
{
}
config_t&
operator=(config_t const& other)
{
hash_function() = other.hash_function();
key_eq() = other.key_eq();
alloc() = other.alloc();
clock = other.clock;
return *this;
}
config_t&
operator=(config_t&& other)
{
hash_function() = std::move(other.hash_function());
key_eq() = std::move(other.key_eq());
alloc() = std::move(other.alloc());
clock = other.clock;
return *this;
}
ValueHash&
value_hash()
{
return *this;
}
ValueHash const&
value_hash() const
{
return *this;
}
Hash&
hash_function()
{
return ValueHash::hash_function();
}
Hash const&
hash_function() const
{
return ValueHash::hash_function();
}
KeyValueEqual&
key_value_equal()
{
return *this;
}
KeyValueEqual const&
key_value_equal() const
{
return *this;
}
KeyEqual&
key_eq()
{
return key_value_equal().key_eq();
}
KeyEqual const&
key_eq() const
{
return key_value_equal().key_eq();
}
ElementAllocator&
alloc()
{
return beast::detail::empty_base_optimization<
ElementAllocator>::member();
}
ElementAllocator const&
alloc() const
{
return beast::detail::empty_base_optimization<
ElementAllocator>::member();
}
std::reference_wrapper<clock_type> clock;
};
class Buckets
{
public:
using vec_type = std::vector<
bucket_type,
typename std::allocator_traits<Allocator>::template rebind_alloc<
bucket_type>>;
Buckets() : m_max_load_factor(1.f), m_vec()
{
m_vec.resize(cont_type::suggested_upper_bucket_count(0));
}
Buckets(Allocator const& alloc) : m_max_load_factor(1.f), m_vec(alloc)
{
m_vec.resize(cont_type::suggested_upper_bucket_count(0));
}
operator bucket_traits()
{
return bucket_traits(&m_vec[0], m_vec.size());
}
void
clear()
{
m_vec.clear();
}
size_type
max_bucket_count() const
{
return m_vec.max_size();
}
float&
max_load_factor()
{
return m_max_load_factor;
}
float const&
max_load_factor() const
{
return m_max_load_factor;
}
// count is the number of buckets
template <class Container>
void
rehash(size_type count, Container& c)
{
size_type const size(m_vec.size());
if (count == size)
return;
if (count > m_vec.capacity())
{
// Need two vectors otherwise we
// will destroy non-empty buckets.
vec_type vec(m_vec.get_allocator());
std::swap(m_vec, vec);
m_vec.resize(count);
c.rehash(bucket_traits(&m_vec[0], m_vec.size()));
return;
}
// Rehash in place.
if (count > size)
{
// This should not reallocate since
// we checked capacity earlier.
m_vec.resize(count);
c.rehash(bucket_traits(&m_vec[0], count));
return;
}
// Resize must happen after rehash otherwise
// we might destroy non-empty buckets.
c.rehash(bucket_traits(&m_vec[0], count));
m_vec.resize(count);
}
// Resize the buckets to accommodate at least n items.
template <class Container>
void
resize(size_type n, Container& c)
{
size_type const suggested(
cont_type::suggested_upper_bucket_count(n));
rehash(suggested, c);
}
private:
float m_max_load_factor;
vec_type m_vec;
};
template <class... Args>
element*
new_element(Args&&... args)
{
struct Deleter
{
std::reference_wrapper<ElementAllocator> a_;
Deleter(ElementAllocator& a) : a_(a)
{
}
void
operator()(element* p)
{
ElementAllocatorTraits::deallocate(a_.get(), p, 1);
}
};
std::unique_ptr<element, Deleter> p(
ElementAllocatorTraits::allocate(m_config.alloc(), 1),
Deleter(m_config.alloc()));
ElementAllocatorTraits::construct(
m_config.alloc(),
p.get(),
clock().now(),
std::forward<Args>(args)...);
return p.release();
}
void
delete_element(element const* p)
{
ElementAllocatorTraits::destroy(m_config.alloc(), p);
ElementAllocatorTraits::deallocate(
m_config.alloc(), const_cast<element*>(p), 1);
}
void
unlink_and_delete_element(element const* p)
{
chronological.list.erase(chronological.list.iterator_to(*p));
m_cont.erase(m_cont.iterator_to(*p));
delete_element(p);
}
public:
using hasher = Hash;
using key_equal = KeyEqual;
using allocator_type = Allocator;
using reference = value_type&;
using const_reference = value_type const&;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer =
typename std::allocator_traits<Allocator>::const_pointer;
// A set iterator (IsMap==false) is always const
// because the elements of a set are immutable.
using iterator = beast::detail::
aged_container_iterator<!IsMap, typename cont_type::iterator>;
using const_iterator = beast::detail::
aged_container_iterator<true, typename cont_type::iterator>;
using local_iterator = beast::detail::
aged_container_iterator<!IsMap, typename cont_type::local_iterator>;
using const_local_iterator = beast::detail::
aged_container_iterator<true, typename cont_type::local_iterator>;
//--------------------------------------------------------------------------
//
// Chronological ordered iterators
//
// "Memberspace"
// http://accu.org/index.php/journals/1527
//
//--------------------------------------------------------------------------
class chronological_t
{
public:
// A set iterator (IsMap==false) is always const
// because the elements of a set are immutable.
using iterator = beast::detail::
aged_container_iterator<!IsMap, typename list_type::iterator>;
using const_iterator = beast::detail::
aged_container_iterator<true, typename list_type::iterator>;
using reverse_iterator = beast::detail::aged_container_iterator<
!IsMap,
typename list_type::reverse_iterator>;
using const_reverse_iterator = beast::detail::
aged_container_iterator<true, typename list_type::reverse_iterator>;
iterator
begin()
{
return iterator(list.begin());
}
const_iterator
begin() const
{
return const_iterator(list.begin());
}
const_iterator
cbegin() const
{
return const_iterator(list.begin());
}
iterator
end()
{
return iterator(list.end());
}
const_iterator
end() const
{
return const_iterator(list.end());
}
const_iterator
cend() const
{
return const_iterator(list.end());
}
reverse_iterator
rbegin()
{
return reverse_iterator(list.rbegin());
}
const_reverse_iterator
rbegin() const
{
return const_reverse_iterator(list.rbegin());
}
const_reverse_iterator
crbegin() const
{
return const_reverse_iterator(list.rbegin());
}
reverse_iterator
rend()
{
return reverse_iterator(list.rend());
}
const_reverse_iterator
rend() const
{
return const_reverse_iterator(list.rend());
}
const_reverse_iterator
crend() const
{
return const_reverse_iterator(list.rend());
}
iterator
iterator_to(value_type& value)
{
static_assert(
std::is_standard_layout<element>::value,
"must be standard layout");
return list.iterator_to(*reinterpret_cast<element*>(
reinterpret_cast<uint8_t*>(&value) -
((std::size_t)std::addressof(((element*)0)->member))));
}
const_iterator
iterator_to(value_type const& value) const
{
static_assert(
std::is_standard_layout<element>::value,
"must be standard layout");
return list.iterator_to(*reinterpret_cast<element const*>(
reinterpret_cast<uint8_t const*>(&value) -
((std::size_t)std::addressof(((element*)0)->member))));
}
private:
chronological_t()
{
}
chronological_t(chronological_t const&) = delete;
chronological_t(chronological_t&&) = delete;
friend class aged_unordered_container;
list_type mutable list;
} chronological;
//--------------------------------------------------------------------------
//
// Construction
//
//--------------------------------------------------------------------------
aged_unordered_container() = delete;
explicit aged_unordered_container(clock_type& clock);
aged_unordered_container(clock_type& clock, Hash const& hash);
aged_unordered_container(clock_type& clock, KeyEqual const& key_eq);
aged_unordered_container(clock_type& clock, Allocator const& alloc);
aged_unordered_container(
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq);
aged_unordered_container(
clock_type& clock,
Hash const& hash,
Allocator const& alloc);
aged_unordered_container(
clock_type& clock,
KeyEqual const& key_eq,
Allocator const& alloc);
aged_unordered_container(
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq,
Allocator const& alloc);
template <class InputIt>
aged_unordered_container(InputIt first, InputIt last, clock_type& clock);
template <class InputIt>
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash);
template <class InputIt>
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
KeyEqual const& key_eq);
template <class InputIt>
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Allocator const& alloc);
template <class InputIt>
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq);
template <class InputIt>
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash,
Allocator const& alloc);
template <class InputIt>
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
KeyEqual const& key_eq,
Allocator const& alloc);
template <class InputIt>
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq,
Allocator const& alloc);
aged_unordered_container(aged_unordered_container const& other);
aged_unordered_container(
aged_unordered_container const& other,
Allocator const& alloc);
aged_unordered_container(aged_unordered_container&& other);
aged_unordered_container(
aged_unordered_container&& other,
Allocator const& alloc);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
KeyEqual const& key_eq);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Allocator const& alloc);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash,
Allocator const& alloc);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
KeyEqual const& key_eq,
Allocator const& alloc);
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq,
Allocator const& alloc);
~aged_unordered_container();
aged_unordered_container&
operator=(aged_unordered_container const& other);
aged_unordered_container&
operator=(aged_unordered_container&& other);
aged_unordered_container&
operator=(std::initializer_list<value_type> init);
allocator_type
get_allocator() const
{
return m_config.alloc();
}
clock_type&
clock()
{
return m_config.clock;
}
clock_type const&
clock() const
{
return m_config.clock;
}
//--------------------------------------------------------------------------
//
// Element access (maps)
//
//--------------------------------------------------------------------------
template <
class K,
bool maybe_multi = IsMulti,
bool maybe_map = IsMap,
class = typename std::enable_if<maybe_map && !maybe_multi>::type>
typename std::conditional<IsMap, T, void*>::type&
at(K const& k);
template <
class K,
bool maybe_multi = IsMulti,
bool maybe_map = IsMap,
class = typename std::enable_if<maybe_map && !maybe_multi>::type>
typename std::conditional<IsMap, T, void*>::type const&
at(K const& k) const;
template <
bool maybe_multi = IsMulti,
bool maybe_map = IsMap,
class = typename std::enable_if<maybe_map && !maybe_multi>::type>
typename std::conditional<IsMap, T, void*>::type&
operator[](Key const& key);
template <
bool maybe_multi = IsMulti,
bool maybe_map = IsMap,
class = typename std::enable_if<maybe_map && !maybe_multi>::type>
typename std::conditional<IsMap, T, void*>::type&
operator[](Key&& key);
//--------------------------------------------------------------------------
//
// Iterators
//
//--------------------------------------------------------------------------
iterator
begin()
{
return iterator(m_cont.begin());
}
const_iterator
begin() const
{
return const_iterator(m_cont.begin());
}
const_iterator
cbegin() const
{
return const_iterator(m_cont.begin());
}
iterator
end()
{
return iterator(m_cont.end());
}
const_iterator
end() const
{
return const_iterator(m_cont.end());
}
const_iterator
cend() const
{
return const_iterator(m_cont.end());
}
iterator
iterator_to(value_type& value)
{
static_assert(
std::is_standard_layout<element>::value, "must be standard layout");
return m_cont.iterator_to(*reinterpret_cast<element*>(
reinterpret_cast<uint8_t*>(&value) -
((std::size_t)std::addressof(((element*)0)->member))));
}
const_iterator
iterator_to(value_type const& value) const
{
static_assert(
std::is_standard_layout<element>::value, "must be standard layout");
return m_cont.iterator_to(*reinterpret_cast<element const*>(
reinterpret_cast<uint8_t const*>(&value) -
((std::size_t)std::addressof(((element*)0)->member))));
}
//--------------------------------------------------------------------------
//
// Capacity
//
//--------------------------------------------------------------------------
bool
empty() const noexcept
{
return m_cont.empty();
}
size_type
size() const noexcept
{
return m_cont.size();
}
size_type
max_size() const noexcept
{
return m_config.max_size();
}
//--------------------------------------------------------------------------
//
// Modifiers
//
//--------------------------------------------------------------------------
void
clear();
// map, set
template <bool maybe_multi = IsMulti>
auto
insert(value_type const& value) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type;
// multimap, multiset
template <bool maybe_multi = IsMulti>
auto
insert(value_type const& value) ->
typename std::enable_if<maybe_multi, iterator>::type;
// map, set
template <bool maybe_multi = IsMulti, bool maybe_map = IsMap>
auto
insert(value_type&& value) -> typename std::enable_if<
!maybe_multi && !maybe_map,
std::pair<iterator, bool>>::type;
// multimap, multiset
template <bool maybe_multi = IsMulti, bool maybe_map = IsMap>
auto
insert(value_type&& value) ->
typename std::enable_if<maybe_multi && !maybe_map, iterator>::type;
// map, set
template <bool maybe_multi = IsMulti>
typename std::enable_if<!maybe_multi, iterator>::type
insert(const_iterator /*hint*/, value_type const& value)
{
// Hint is ignored but we provide the interface so
// callers may use ordered and unordered interchangeably.
return insert(value).first;
}
// multimap, multiset
template <bool maybe_multi = IsMulti>
typename std::enable_if<maybe_multi, iterator>::type
insert(const_iterator /*hint*/, value_type const& value)
{
// VFALCO TODO The hint could be used to let
// the client order equal ranges
return insert(value);
}
// map, set
template <bool maybe_multi = IsMulti>
typename std::enable_if<!maybe_multi, iterator>::type
insert(const_iterator /*hint*/, value_type&& value)
{
// Hint is ignored but we provide the interface so
// callers may use ordered and unordered interchangeably.
return insert(std::move(value)).first;
}
// multimap, multiset
template <bool maybe_multi = IsMulti>
typename std::enable_if<maybe_multi, iterator>::type
insert(const_iterator /*hint*/, value_type&& value)
{
// VFALCO TODO The hint could be used to let
// the client order equal ranges
return insert(std::move(value));
}
// map, multimap
template <class P, bool maybe_map = IsMap>
typename std::enable_if<
maybe_map && std::is_constructible<value_type, P&&>::value,
typename std::
conditional<IsMulti, iterator, std::pair<iterator, bool>>::type>::
type
insert(P&& value)
{
return emplace(std::forward<P>(value));
}
// map, multimap
template <class P, bool maybe_map = IsMap>
typename std::enable_if<
maybe_map && std::is_constructible<value_type, P&&>::value,
typename std::
conditional<IsMulti, iterator, std::pair<iterator, bool>>::type>::
type
insert(const_iterator hint, P&& value)
{
return emplace_hint(hint, std::forward<P>(value));
}
template <class InputIt>
void
insert(InputIt first, InputIt last)
{
insert(
first,
last,
typename std::iterator_traits<InputIt>::iterator_category());
}
void
insert(std::initializer_list<value_type> init)
{
insert(init.begin(), init.end());
}
// set, map
template <bool maybe_multi = IsMulti, class... Args>
auto
emplace(Args&&... args) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type;
// multiset, multimap
template <bool maybe_multi = IsMulti, class... Args>
auto
emplace(Args&&... args) ->
typename std::enable_if<maybe_multi, iterator>::type;
// set, map
template <bool maybe_multi = IsMulti, class... Args>
auto
emplace_hint(const_iterator /*hint*/, Args&&... args) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type;
// multiset, multimap
template <bool maybe_multi = IsMulti, class... Args>
typename std::enable_if<maybe_multi, iterator>::type
emplace_hint(const_iterator /*hint*/, Args&&... args)
{
// VFALCO TODO The hint could be used for multi, to let
// the client order equal ranges
return emplace<maybe_multi>(std::forward<Args>(args)...);
}
template <bool is_const, class Iterator>
beast::detail::aged_container_iterator<false, Iterator>
erase(beast::detail::aged_container_iterator<is_const, Iterator> pos);
template <bool is_const, class Iterator>
beast::detail::aged_container_iterator<false, Iterator>
erase(
beast::detail::aged_container_iterator<is_const, Iterator> first,
beast::detail::aged_container_iterator<is_const, Iterator> last);
template <class K>
auto
erase(K const& k) -> size_type;
void
swap(aged_unordered_container& other) noexcept;
template <bool is_const, class Iterator>
void
touch(beast::detail::aged_container_iterator<is_const, Iterator> pos)
{
touch(pos, clock().now());
}
template <class K>
auto
touch(K const& k) -> size_type;
//--------------------------------------------------------------------------
//
// Lookup
//
//--------------------------------------------------------------------------
// VFALCO TODO Respect is_transparent (c++14)
template <class K>
size_type
count(K const& k) const
{
return m_cont.count(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()));
}
// VFALCO TODO Respect is_transparent (c++14)
template <class K>
iterator
find(K const& k)
{
return iterator(m_cont.find(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal())));
}
// VFALCO TODO Respect is_transparent (c++14)
template <class K>
const_iterator
find(K const& k) const
{
return const_iterator(m_cont.find(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal())));
}
// VFALCO TODO Respect is_transparent (c++14)
template <class K>
std::pair<iterator, iterator>
equal_range(K const& k)
{
auto const r(m_cont.equal_range(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal())));
return std::make_pair(iterator(r.first), iterator(r.second));
}
// VFALCO TODO Respect is_transparent (c++14)
template <class K>
std::pair<const_iterator, const_iterator>
equal_range(K const& k) const
{
auto const r(m_cont.equal_range(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal())));
return std::make_pair(
const_iterator(r.first), const_iterator(r.second));
}
//--------------------------------------------------------------------------
//
// Bucket interface
//
//--------------------------------------------------------------------------
local_iterator
begin(size_type n)
{
return local_iterator(m_cont.begin(n));
}
const_local_iterator
begin(size_type n) const
{
return const_local_iterator(m_cont.begin(n));
}
const_local_iterator
cbegin(size_type n) const
{
return const_local_iterator(m_cont.begin(n));
}
local_iterator
end(size_type n)
{
return local_iterator(m_cont.end(n));
}
const_local_iterator
end(size_type n) const
{
return const_local_iterator(m_cont.end(n));
}
const_local_iterator
cend(size_type n) const
{
return const_local_iterator(m_cont.end(n));
}
size_type
bucket_count() const
{
return m_cont.bucket_count();
}
size_type
max_bucket_count() const
{
return m_buck.max_bucket_count();
}
size_type
bucket_size(size_type n) const
{
return m_cont.bucket_size(n);
}
size_type
bucket(Key const& k) const
{
XRPL_ASSERT(
bucket_count() != 0,
"beast::detail::aged_unordered_container::bucket : nonzero bucket "
"count");
return m_cont.bucket(k, std::cref(m_config.hash_function()));
}
//--------------------------------------------------------------------------
//
// Hash policy
//
//--------------------------------------------------------------------------
float
load_factor() const
{
return size() / static_cast<float>(m_cont.bucket_count());
}
float
max_load_factor() const
{
return m_buck.max_load_factor();
}
void
max_load_factor(float ml)
{
m_buck.max_load_factor() = std::max(ml, m_buck.max_load_factor());
}
void
rehash(size_type count)
{
count = std::max(count, size_type(size() / max_load_factor()));
m_buck.rehash(count, m_cont);
}
void
reserve(size_type count)
{
rehash(std::ceil(count / max_load_factor()));
}
//--------------------------------------------------------------------------
//
// Observers
//
//--------------------------------------------------------------------------
hasher const&
hash_function() const
{
return m_config.hash_function();
}
key_equal const&
key_eq() const
{
return m_config.key_eq();
}
//--------------------------------------------------------------------------
//
// Comparison
//
//--------------------------------------------------------------------------
// This differs from the standard in that the comparison
// is only done on the key portion of the value type, ignoring
// the mapped type.
//
template <
bool OtherIsMap,
class OtherKey,
class OtherT,
class OtherDuration,
class OtherHash,
class OtherAllocator,
bool maybe_multi = IsMulti>
typename std::enable_if<!maybe_multi, bool>::type
operator==(aged_unordered_container<
false,
OtherIsMap,
OtherKey,
OtherT,
OtherDuration,
OtherHash,
KeyEqual,
OtherAllocator> const& other) const;
template <
bool OtherIsMap,
class OtherKey,
class OtherT,
class OtherDuration,
class OtherHash,
class OtherAllocator,
bool maybe_multi = IsMulti>
typename std::enable_if<maybe_multi, bool>::type
operator==(aged_unordered_container<
true,
OtherIsMap,
OtherKey,
OtherT,
OtherDuration,
OtherHash,
KeyEqual,
OtherAllocator> const& other) const;
template <
bool OtherIsMulti,
bool OtherIsMap,
class OtherKey,
class OtherT,
class OtherDuration,
class OtherHash,
class OtherAllocator>
bool
operator!=(aged_unordered_container<
OtherIsMulti,
OtherIsMap,
OtherKey,
OtherT,
OtherDuration,
OtherHash,
KeyEqual,
OtherAllocator> const& other) const
{
return !(this->operator==(other));
}
private:
bool
would_exceed(size_type additional) const
{
return size() + additional > bucket_count() * max_load_factor();
}
void
maybe_rehash(size_type additional)
{
if (would_exceed(additional))
m_buck.resize(size() + additional, m_cont);
XRPL_ASSERT(
load_factor() <= max_load_factor(),
"beast::detail::aged_unordered_container::maybe_rehash : maximum "
"load factor");
}
// map, set
template <bool maybe_multi = IsMulti>
auto
insert_unchecked(value_type const& value) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type;
// multimap, multiset
template <bool maybe_multi = IsMulti>
auto
insert_unchecked(value_type const& value) ->
typename std::enable_if<maybe_multi, iterator>::type;
template <class InputIt>
void
insert_unchecked(InputIt first, InputIt last)
{
for (; first != last; ++first)
insert_unchecked(*first);
}
template <class InputIt>
void
insert(InputIt first, InputIt last, std::input_iterator_tag)
{
for (; first != last; ++first)
insert(*first);
}
template <class InputIt>
void
insert(InputIt first, InputIt last, std::random_access_iterator_tag)
{
auto const n(std::distance(first, last));
maybe_rehash(n);
insert_unchecked(first, last);
}
template <bool is_const, class Iterator>
void
touch(
beast::detail::aged_container_iterator<is_const, Iterator> pos,
typename clock_type::time_point const& now)
{
auto& e(*pos.iterator());
e.when = now;
chronological.list.erase(chronological.list.iterator_to(e));
chronological.list.push_back(e);
}
template <
bool maybe_propagate = std::allocator_traits<
Allocator>::propagate_on_container_swap::value>
typename std::enable_if<maybe_propagate>::type
swap_data(aged_unordered_container& other) noexcept
{
std::swap(m_config.key_compare(), other.m_config.key_compare());
std::swap(m_config.alloc(), other.m_config.alloc());
std::swap(m_config.clock, other.m_config.clock);
}
template <
bool maybe_propagate = std::allocator_traits<
Allocator>::propagate_on_container_swap::value>
typename std::enable_if<!maybe_propagate>::type
swap_data(aged_unordered_container& other) noexcept
{
std::swap(m_config.key_compare(), other.m_config.key_compare());
std::swap(m_config.clock, other.m_config.clock);
}
private:
config_t m_config;
Buckets m_buck;
cont_type mutable m_cont;
};
//------------------------------------------------------------------------------
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::aged_unordered_container(clock_type& clock)
: m_config(clock)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::aged_unordered_container(clock_type& clock, Hash const& hash)
: m_config(clock, hash)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(clock_type& clock, KeyEqual const& key_eq)
: m_config(clock, key_eq)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(clock_type& clock, Allocator const& alloc)
: m_config(clock, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq)
: m_config(clock, hash, key_eq)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
clock_type& clock,
Hash const& hash,
Allocator const& alloc)
: m_config(clock, hash, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
clock_type& clock,
KeyEqual const& key_eq,
Allocator const& alloc)
: m_config(clock, key_eq, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq,
Allocator const& alloc)
: m_config(clock, hash, key_eq, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(InputIt first, InputIt last, clock_type& clock)
: m_config(clock)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash)
: m_config(clock, hash)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
KeyEqual const& key_eq)
: m_config(clock, key_eq)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Allocator const& alloc)
: m_config(clock, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq)
: m_config(clock, hash, key_eq)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash,
Allocator const& alloc)
: m_config(clock, hash, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
KeyEqual const& key_eq,
Allocator const& alloc)
: m_config(clock, key_eq, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class InputIt>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
InputIt first,
InputIt last,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq,
Allocator const& alloc)
: m_config(clock, hash, key_eq, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(first, last);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::aged_unordered_container(aged_unordered_container const& other)
: m_config(other.m_config)
, m_buck(m_config.alloc())
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(other.cbegin(), other.cend());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
aged_unordered_container const& other,
Allocator const& alloc)
: m_config(other.m_config, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(other.cbegin(), other.cend());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::aged_unordered_container(aged_unordered_container&& other)
: m_config(std::move(other.m_config))
, m_buck(std::move(other.m_buck))
, m_cont(std::move(other.m_cont))
{
chronological.list = std::move(other.chronological.list);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
aged_unordered_container&& other,
Allocator const& alloc)
: m_config(std::move(other.m_config), alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(other.cbegin(), other.cend());
other.clear();
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock)
: m_config(clock)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash)
: m_config(clock, hash)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
KeyEqual const& key_eq)
: m_config(clock, key_eq)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Allocator const& alloc)
: m_config(clock, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq)
: m_config(clock, hash, key_eq)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash,
Allocator const& alloc)
: m_config(clock, hash, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
KeyEqual const& key_eq,
Allocator const& alloc)
: m_config(clock, key_eq, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
aged_unordered_container(
std::initializer_list<value_type> init,
clock_type& clock,
Hash const& hash,
KeyEqual const& key_eq,
Allocator const& alloc)
: m_config(clock, hash, key_eq, alloc)
, m_buck(alloc)
, m_cont(
m_buck,
std::cref(m_config.value_hash()),
std::cref(m_config.key_value_equal()))
{
insert(init.begin(), init.end());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::~aged_unordered_container()
{
clear();
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::operator=(aged_unordered_container const& other)
-> aged_unordered_container&
{
if (this != &other)
{
size_type const n(other.size());
clear();
m_config = other.m_config;
m_buck = Buckets(m_config.alloc());
maybe_rehash(n);
insert_unchecked(other.begin(), other.end());
}
return *this;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::operator=(aged_unordered_container&& other)
-> aged_unordered_container&
{
size_type const n(other.size());
clear();
m_config = std::move(other.m_config);
m_buck = Buckets(m_config.alloc());
maybe_rehash(n);
insert_unchecked(other.begin(), other.end());
other.clear();
return *this;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::operator=(std::initializer_list<value_type> init)
-> aged_unordered_container&
{
clear();
insert(init);
return *this;
}
//------------------------------------------------------------------------------
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class K, bool maybe_multi, bool maybe_map, class>
typename std::conditional<IsMap, T, void*>::type&
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::at(K const& k)
{
auto const iter(m_cont.find(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal())));
if (iter == m_cont.end())
throw std::out_of_range("key not found");
return iter->value.second;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class K, bool maybe_multi, bool maybe_map, class>
typename std::conditional<IsMap, T, void*>::type const&
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::at(K const& k) const
{
auto const iter(m_cont.find(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal())));
if (iter == m_cont.end())
throw std::out_of_range("key not found");
return iter->value.second;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, bool maybe_map, class>
typename std::conditional<IsMap, T, void*>::type&
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::operator[](Key const& key)
{
maybe_rehash(1);
typename cont_type::insert_commit_data d;
auto const result(m_cont.insert_check(
key,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()),
d));
if (result.second)
{
element* const p(new_element(
std::piecewise_construct,
std::forward_as_tuple(key),
std::forward_as_tuple()));
m_cont.insert_commit(*p, d);
chronological.list.push_back(*p);
return p->value.second;
}
return result.first->value.second;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, bool maybe_map, class>
typename std::conditional<IsMap, T, void*>::type&
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::operator[](Key&& key)
{
maybe_rehash(1);
typename cont_type::insert_commit_data d;
auto const result(m_cont.insert_check(
key,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()),
d));
if (result.second)
{
element* const p(new_element(
std::piecewise_construct,
std::forward_as_tuple(std::move(key)),
std::forward_as_tuple()));
m_cont.insert_commit(*p, d);
chronological.list.push_back(*p);
return p->value.second;
}
return result.first->value.second;
}
//------------------------------------------------------------------------------
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
void
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::clear()
{
for (auto iter(chronological.list.begin());
iter != chronological.list.end();)
unlink_and_delete_element(&*iter++);
chronological.list.clear();
m_cont.clear();
m_buck.clear();
}
// map, set
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::insert(value_type const& value) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type
{
maybe_rehash(1);
typename cont_type::insert_commit_data d;
auto const result(m_cont.insert_check(
extract(value),
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()),
d));
if (result.second)
{
element* const p(new_element(value));
auto const iter(m_cont.insert_commit(*p, d));
chronological.list.push_back(*p);
return std::make_pair(iterator(iter), true);
}
return std::make_pair(iterator(result.first), false);
}
// multimap, multiset
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::insert(value_type const& value) ->
typename std::enable_if<maybe_multi, iterator>::type
{
maybe_rehash(1);
element* const p(new_element(value));
chronological.list.push_back(*p);
auto const iter(m_cont.insert(*p));
return iterator(iter);
}
// map, set
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, bool maybe_map>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::insert(value_type&& value) ->
typename std::
enable_if<!maybe_multi && !maybe_map, std::pair<iterator, bool>>::type
{
maybe_rehash(1);
typename cont_type::insert_commit_data d;
auto const result(m_cont.insert_check(
extract(value),
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()),
d));
if (result.second)
{
element* const p(new_element(std::move(value)));
auto const iter(m_cont.insert_commit(*p, d));
chronological.list.push_back(*p);
return std::make_pair(iterator(iter), true);
}
return std::make_pair(iterator(result.first), false);
}
// multimap, multiset
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, bool maybe_map>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::insert(value_type&& value) ->
typename std::enable_if<maybe_multi && !maybe_map, iterator>::type
{
maybe_rehash(1);
element* const p(new_element(std::move(value)));
chronological.list.push_back(*p);
auto const iter(m_cont.insert(*p));
return iterator(iter);
}
#if 1 // Use insert() instead of insert_check() insert_commit()
// set, map
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, class... Args>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::emplace(Args&&... args) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type
{
maybe_rehash(1);
// VFALCO NOTE Its unfortunate that we need to
// construct element here
element* const p(new_element(std::forward<Args>(args)...));
auto const result(m_cont.insert(*p));
if (result.second)
{
chronological.list.push_back(*p);
return std::make_pair(iterator(result.first), true);
}
delete_element(p);
return std::make_pair(iterator(result.first), false);
}
#else // As original, use insert_check() / insert_commit () pair.
// set, map
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, class... Args>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::emplace(Args&&... args) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type
{
maybe_rehash(1);
// VFALCO NOTE Its unfortunate that we need to
// construct element here
element* const p(new_element(std::forward<Args>(args)...));
typename cont_type::insert_commit_data d;
auto const result(m_cont.insert_check(
extract(p->value),
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()),
d));
if (result.second)
{
auto const iter(m_cont.insert_commit(*p, d));
chronological.list.push_back(*p);
return std::make_pair(iterator(iter), true);
}
delete_element(p);
return std::make_pair(iterator(result.first), false);
}
#endif // 0
// multiset, multimap
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, class... Args>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::emplace(Args&&... args) ->
typename std::enable_if<maybe_multi, iterator>::type
{
maybe_rehash(1);
element* const p(new_element(std::forward<Args>(args)...));
chronological.list.push_back(*p);
auto const iter(m_cont.insert(*p));
return iterator(iter);
}
// set, map
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi, class... Args>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::emplace_hint(const_iterator /*hint*/, Args&&... args) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type
{
maybe_rehash(1);
// VFALCO NOTE Its unfortunate that we need to
// construct element here
element* const p(new_element(std::forward<Args>(args)...));
typename cont_type::insert_commit_data d;
auto const result(m_cont.insert_check(
extract(p->value),
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()),
d));
if (result.second)
{
auto const iter(m_cont.insert_commit(*p, d));
chronological.list.push_back(*p);
return std::make_pair(iterator(iter), true);
}
delete_element(p);
return std::make_pair(iterator(result.first), false);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool is_const, class Iterator>
beast::detail::aged_container_iterator<false, Iterator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::erase(beast::detail::aged_container_iterator<is_const, Iterator>
pos)
{
unlink_and_delete_element(&*((pos++).iterator()));
return beast::detail::aged_container_iterator<false, Iterator>(
pos.iterator());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool is_const, class Iterator>
beast::detail::aged_container_iterator<false, Iterator>
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
erase(
beast::detail::aged_container_iterator<is_const, Iterator> first,
beast::detail::aged_container_iterator<is_const, Iterator> last)
{
for (; first != last;)
unlink_and_delete_element(&*((first++).iterator()));
return beast::detail::aged_container_iterator<false, Iterator>(
first.iterator());
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class K>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::erase(K const& k) -> size_type
{
auto iter(m_cont.find(
k,
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal())));
if (iter == m_cont.end())
return 0;
size_type n(0);
for (;;)
{
auto p(&*iter++);
bool const done(m_config(*p, extract(iter->value)));
unlink_and_delete_element(p);
++n;
if (done)
break;
}
return n;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
void
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::swap(aged_unordered_container& other) noexcept
{
swap_data(other);
std::swap(chronological, other.chronological);
std::swap(m_cont, other.m_cont);
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <class K>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::touch(K const& k) -> size_type
{
auto const now(clock().now());
size_type n(0);
auto const range(equal_range(k));
for (auto iter : range)
{
touch(iter, now);
++n;
}
return n;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <
bool OtherIsMap,
class OtherKey,
class OtherT,
class OtherDuration,
class OtherHash,
class OtherAllocator,
bool maybe_multi>
typename std::enable_if<!maybe_multi, bool>::type
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
operator==(aged_unordered_container<
false,
OtherIsMap,
OtherKey,
OtherT,
OtherDuration,
OtherHash,
KeyEqual,
OtherAllocator> const& other) const
{
if (size() != other.size())
return false;
for (auto iter(cbegin()), last(cend()), olast(other.cend()); iter != last;
++iter)
{
auto oiter(other.find(extract(*iter)));
if (oiter == olast)
return false;
}
return true;
}
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <
bool OtherIsMap,
class OtherKey,
class OtherT,
class OtherDuration,
class OtherHash,
class OtherAllocator,
bool maybe_multi>
typename std::enable_if<maybe_multi, bool>::type
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::
operator==(aged_unordered_container<
true,
OtherIsMap,
OtherKey,
OtherT,
OtherDuration,
OtherHash,
KeyEqual,
OtherAllocator> const& other) const
{
if (size() != other.size())
return false;
for (auto iter(cbegin()), last(cend()); iter != last;)
{
auto const& k(extract(*iter));
auto const eq(equal_range(k));
auto const oeq(other.equal_range(k));
#if BEAST_NO_CXX14_IS_PERMUTATION
if (std::distance(eq.first, eq.second) !=
std::distance(oeq.first, oeq.second) ||
!std::is_permutation(eq.first, eq.second, oeq.first))
return false;
#else
if (!std::is_permutation(eq.first, eq.second, oeq.first, oeq.second))
return false;
#endif
iter = eq.second;
}
return true;
}
//------------------------------------------------------------------------------
// map, set
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::insert_unchecked(value_type const& value) ->
typename std::enable_if<!maybe_multi, std::pair<iterator, bool>>::type
{
typename cont_type::insert_commit_data d;
auto const result(m_cont.insert_check(
extract(value),
std::cref(m_config.hash_function()),
std::cref(m_config.key_value_equal()),
d));
if (result.second)
{
element* const p(new_element(value));
auto const iter(m_cont.insert_commit(*p, d));
chronological.list.push_back(*p);
return std::make_pair(iterator(iter), true);
}
return std::make_pair(iterator(result.first), false);
}
// multimap, multiset
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
template <bool maybe_multi>
auto
aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>::insert_unchecked(value_type const& value) ->
typename std::enable_if<maybe_multi, iterator>::type
{
element* const p(new_element(value));
chronological.list.push_back(*p);
auto const iter(m_cont.insert(*p));
return iterator(iter);
}
//------------------------------------------------------------------------------
} // namespace detail
//------------------------------------------------------------------------------
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
struct is_aged_container<beast::detail::aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>> : std::true_type
{
explicit is_aged_container() = default;
};
// Free functions
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator>
void
swap(
beast::detail::aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>& lhs,
beast::detail::aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>& rhs) noexcept
{
lhs.swap(rhs);
}
/** Expire aged container items past the specified age. */
template <
bool IsMulti,
bool IsMap,
class Key,
class T,
class Clock,
class Hash,
class KeyEqual,
class Allocator,
class Rep,
class Period>
std::size_t
expire(
beast::detail::aged_unordered_container<
IsMulti,
IsMap,
Key,
T,
Clock,
Hash,
KeyEqual,
Allocator>& c,
std::chrono::duration<Rep, Period> const& age) noexcept
{
std::size_t n(0);
auto const expired(c.clock().now() - age);
for (auto iter(c.chronological.cbegin());
iter != c.chronological.cend() && iter.when() <= expired;)
{
iter = c.erase(iter);
++n;
}
return n;
}
} // namespace beast
#endif