Files
rippled/src/libxrpl/protocol/Serializer.cpp
Elliot Lee f419c18056 Add a new serialized type: STNumber (#5121)
`STNumber` lets objects and transactions contain multiple fields for
quantities of XRP, IOU, or MPT without duplicating information about the
"issue" (represented by `STIssue`). It is a straightforward serialization of
the `Number` type that uniformly represents those quantities.

---------

Co-authored-by: John Freeman <jfreeman08@gmail.com>
Co-authored-by: Howard Hinnant <howard.hinnant@gmail.com>
2024-11-25 13:16:32 -08:00

519 lines
11 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <xrpl/basics/Log.h>
#include <xrpl/basics/contract.h>
#include <xrpl/protocol/Serializer.h>
#include <xrpl/protocol/digest.h>
#include <cstdint>
#include <type_traits>
namespace ripple {
int
Serializer::add16(std::uint16_t i)
{
int ret = mData.size();
mData.push_back(static_cast<unsigned char>(i >> 8));
mData.push_back(static_cast<unsigned char>(i & 0xff));
return ret;
}
int
Serializer::add32(HashPrefix p)
{
// This should never trigger; the size & type of a hash prefix are
// integral parts of the protocol and unlikely to ever change.
static_assert(
std::is_same_v<std::uint32_t, std::underlying_type_t<decltype(p)>>);
return add32(safe_cast<std::uint32_t>(p));
}
template <>
int
Serializer::addInteger(unsigned char i)
{
return add8(i);
}
template <>
int
Serializer::addInteger(std::uint16_t i)
{
return add16(i);
}
template <>
int
Serializer::addInteger(std::uint32_t i)
{
return add32(i);
}
template <>
int
Serializer::addInteger(std::uint64_t i)
{
return add64(i);
}
int
Serializer::addRaw(Blob const& vector)
{
int ret = mData.size();
mData.insert(mData.end(), vector.begin(), vector.end());
return ret;
}
int
Serializer::addRaw(Slice slice)
{
int ret = mData.size();
mData.insert(mData.end(), slice.begin(), slice.end());
return ret;
}
int
Serializer::addRaw(const Serializer& s)
{
int ret = mData.size();
mData.insert(mData.end(), s.begin(), s.end());
return ret;
}
int
Serializer::addRaw(const void* ptr, int len)
{
int ret = mData.size();
mData.insert(mData.end(), (const char*)ptr, ((const char*)ptr) + len);
return ret;
}
int
Serializer::addFieldID(int type, int name)
{
int ret = mData.size();
assert((type > 0) && (type < 256) && (name > 0) && (name < 256));
if (type < 16)
{
if (name < 16) // common type, common name
mData.push_back(static_cast<unsigned char>((type << 4) | name));
else
{
// common type, uncommon name
mData.push_back(static_cast<unsigned char>(type << 4));
mData.push_back(static_cast<unsigned char>(name));
}
}
else if (name < 16)
{
// uncommon type, common name
mData.push_back(static_cast<unsigned char>(name));
mData.push_back(static_cast<unsigned char>(type));
}
else
{
// uncommon type, uncommon name
mData.push_back(static_cast<unsigned char>(0));
mData.push_back(static_cast<unsigned char>(type));
mData.push_back(static_cast<unsigned char>(name));
}
return ret;
}
int
Serializer::add8(unsigned char byte)
{
int ret = mData.size();
mData.push_back(byte);
return ret;
}
bool
Serializer::get8(int& byte, int offset) const
{
if (offset >= mData.size())
return false;
byte = mData[offset];
return true;
}
bool
Serializer::chop(int bytes)
{
if (bytes > mData.size())
return false;
mData.resize(mData.size() - bytes);
return true;
}
uint256
Serializer::getSHA512Half() const
{
return sha512Half(makeSlice(mData));
}
int
Serializer::addVL(Blob const& vector)
{
int ret = addEncoded(vector.size());
addRaw(vector);
assert(
mData.size() ==
(ret + vector.size() + encodeLengthLength(vector.size())));
return ret;
}
int
Serializer::addVL(Slice const& slice)
{
int ret = addEncoded(slice.size());
if (slice.size())
addRaw(slice.data(), slice.size());
return ret;
}
int
Serializer::addVL(const void* ptr, int len)
{
int ret = addEncoded(len);
if (len)
addRaw(ptr, len);
return ret;
}
int
Serializer::addEncoded(int length)
{
std::array<std::uint8_t, 4> bytes;
int numBytes = 0;
if (length <= 192)
{
bytes[0] = static_cast<unsigned char>(length);
numBytes = 1;
}
else if (length <= 12480)
{
length -= 193;
bytes[0] = 193 + static_cast<unsigned char>(length >> 8);
bytes[1] = static_cast<unsigned char>(length & 0xff);
numBytes = 2;
}
else if (length <= 918744)
{
length -= 12481;
bytes[0] = 241 + static_cast<unsigned char>(length >> 16);
bytes[1] = static_cast<unsigned char>((length >> 8) & 0xff);
bytes[2] = static_cast<unsigned char>(length & 0xff);
numBytes = 3;
}
else
Throw<std::overflow_error>("lenlen");
return addRaw(&bytes[0], numBytes);
}
int
Serializer::encodeLengthLength(int length)
{
if (length < 0)
Throw<std::overflow_error>("len<0");
if (length <= 192)
return 1;
if (length <= 12480)
return 2;
if (length <= 918744)
return 3;
Throw<std::overflow_error>("len>918744");
return 0; // Silence compiler warning.
}
int
Serializer::decodeLengthLength(int b1)
{
if (b1 < 0)
Throw<std::overflow_error>("b1<0");
if (b1 <= 192)
return 1;
if (b1 <= 240)
return 2;
if (b1 <= 254)
return 3;
Throw<std::overflow_error>("b1>254");
return 0; // Silence compiler warning.
}
int
Serializer::decodeVLLength(int b1)
{
if (b1 < 0)
Throw<std::overflow_error>("b1<0");
if (b1 > 254)
Throw<std::overflow_error>("b1>254");
return b1;
}
int
Serializer::decodeVLLength(int b1, int b2)
{
if (b1 < 193)
Throw<std::overflow_error>("b1<193");
if (b1 > 240)
Throw<std::overflow_error>("b1>240");
return 193 + (b1 - 193) * 256 + b2;
}
int
Serializer::decodeVLLength(int b1, int b2, int b3)
{
if (b1 < 241)
Throw<std::overflow_error>("b1<241");
if (b1 > 254)
Throw<std::overflow_error>("b1>254");
return 12481 + (b1 - 241) * 65536 + b2 * 256 + b3;
}
//------------------------------------------------------------------------------
SerialIter::SerialIter(void const* data, std::size_t size) noexcept
: p_(reinterpret_cast<std::uint8_t const*>(data)), remain_(size)
{
}
void
SerialIter::reset() noexcept
{
p_ -= used_;
remain_ += used_;
used_ = 0;
}
void
SerialIter::skip(int length)
{
if (remain_ < length)
Throw<std::runtime_error>("invalid SerialIter skip");
p_ += length;
used_ += length;
remain_ -= length;
}
unsigned char
SerialIter::get8()
{
if (remain_ < 1)
Throw<std::runtime_error>("invalid SerialIter get8");
unsigned char t = *p_;
++p_;
++used_;
--remain_;
return t;
}
std::uint16_t
SerialIter::get16()
{
if (remain_ < 2)
Throw<std::runtime_error>("invalid SerialIter get16");
auto t = p_;
p_ += 2;
used_ += 2;
remain_ -= 2;
return (std::uint64_t(t[0]) << 8) + std::uint64_t(t[1]);
}
std::uint32_t
SerialIter::get32()
{
if (remain_ < 4)
Throw<std::runtime_error>("invalid SerialIter get32");
auto t = p_;
p_ += 4;
used_ += 4;
remain_ -= 4;
return (std::uint64_t(t[0]) << 24) + (std::uint64_t(t[1]) << 16) +
(std::uint64_t(t[2]) << 8) + std::uint64_t(t[3]);
}
std::uint64_t
SerialIter::get64()
{
if (remain_ < 8)
Throw<std::runtime_error>("invalid SerialIter get64");
auto t = p_;
p_ += 8;
used_ += 8;
remain_ -= 8;
return (std::uint64_t(t[0]) << 56) + (std::uint64_t(t[1]) << 48) +
(std::uint64_t(t[2]) << 40) + (std::uint64_t(t[3]) << 32) +
(std::uint64_t(t[4]) << 24) + (std::uint64_t(t[5]) << 16) +
(std::uint64_t(t[6]) << 8) + std::uint64_t(t[7]);
}
std::int32_t
SerialIter::geti32()
{
if (remain_ < 4)
Throw<std::runtime_error>("invalid SerialIter geti32");
auto t = p_;
p_ += 4;
used_ += 4;
remain_ -= 4;
return boost::endian::load_big_s32(t);
}
std::int64_t
SerialIter::geti64()
{
if (remain_ < 8)
Throw<std::runtime_error>("invalid SerialIter geti64");
auto t = p_;
p_ += 8;
used_ += 8;
remain_ -= 8;
return boost::endian::load_big_s64(t);
}
void
SerialIter::getFieldID(int& type, int& name)
{
type = get8();
name = type & 15;
type >>= 4;
if (type == 0)
{
// uncommon type
type = get8();
if (type < 16)
Throw<std::runtime_error>(
"gFID: uncommon type out of range " + std::to_string(type));
}
if (name == 0)
{
// uncommon name
name = get8();
if (name < 16)
Throw<std::runtime_error>(
"gFID: uncommon name out of range " + std::to_string(name));
}
}
// getRaw for blob or buffer
template <class T>
T
SerialIter::getRawHelper(int size)
{
static_assert(
std::is_same<T, Blob>::value || std::is_same<T, Buffer>::value, "");
if (remain_ < size)
Throw<std::runtime_error>("invalid SerialIter getRaw");
T result(size);
if (size != 0)
{
// It's normally safe to call memcpy with size set to 0 (see the
// C99 standard 7.21.1/2). However, here this could mean that
// result.data would be null, which would trigger undefined behavior.
std::memcpy(result.data(), p_, size);
p_ += size;
used_ += size;
remain_ -= size;
}
return result;
}
// VFALCO DEPRECATED Returns a copy
Blob
SerialIter::getRaw(int size)
{
return getRawHelper<Blob>(size);
}
int
SerialIter::getVLDataLength()
{
int b1 = get8();
int datLen;
int lenLen = Serializer::decodeLengthLength(b1);
if (lenLen == 1)
{
datLen = Serializer::decodeVLLength(b1);
}
else if (lenLen == 2)
{
int b2 = get8();
datLen = Serializer::decodeVLLength(b1, b2);
}
else
{
assert(lenLen == 3);
int b2 = get8();
int b3 = get8();
datLen = Serializer::decodeVLLength(b1, b2, b3);
}
return datLen;
}
Slice
SerialIter::getSlice(std::size_t bytes)
{
if (bytes > remain_)
Throw<std::runtime_error>("invalid SerialIter getSlice");
Slice s(p_, bytes);
p_ += bytes;
used_ += bytes;
remain_ -= bytes;
return s;
}
// VFALCO DEPRECATED Returns a copy
Blob
SerialIter::getVL()
{
return getRaw(getVLDataLength());
}
Buffer
SerialIter::getVLBuffer()
{
return getRawHelper<Buffer>(getVLDataLength());
}
} // namespace ripple