Files
rippled/include/xrpl/basics/Number.h
Ed Hennis c9ad49faf3 Step 2.5: Run the STNumber tests using both mantissa sizes
- Nothing really needed to be changed in the tests, but I added a couple
  of test cases for the min and max int64.
2025-11-14 19:41:26 -05:00

594 lines
13 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef XRPL_BASICS_NUMBER_H_INCLUDED
#define XRPL_BASICS_NUMBER_H_INCLUDED
#ifdef _MSC_VER
#include <boost/multiprecision/cpp_int.hpp>
#endif
#include <cstdint>
#include <limits>
#include <optional>
#include <ostream>
#include <string>
namespace ripple {
class Number;
std::string
to_string(Number const& amount);
template <typename T>
constexpr std::optional<int>
logTen(T value)
{
int log = 0;
while (value >= 10 && value % 10 == 0)
{
value /= 10;
++log;
}
if (value == 1)
return log;
return std::nullopt;
}
template <typename T>
constexpr bool
isPowerOfTen(T value)
{
return logTen(value).has_value();
}
#ifdef _MSC_VER
using numberuint128 = boost::multiprecision::uint128_t;
using numberint128 = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using numberuint128 = __uint128_t;
using numberint128 = __int128_t;
#endif // !defined(_MSC_VER)
struct MantissaRange
{
using internalrep = numberint128;
enum mantissa_scale { small, large };
explicit constexpr MantissaRange(mantissa_scale scale_, internalrep min_)
: min(min_)
, max(min_ * 10 - 1)
, log(logTen(min).value_or(-1))
, scale(scale_)
{
}
internalrep min;
internalrep max;
int log;
mantissa_scale scale;
};
class Number
{
using uint128_t = numberuint128;
using int128_t = numberint128;
using rep = std::int64_t;
using internalrep = MantissaRange::internalrep;
internalrep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
public:
// The range for the exponent when normalized
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
// May need to make unchecked private
struct unchecked
{
explicit unchecked() = default;
};
explicit constexpr Number() = default;
Number(rep mantissa);
explicit Number(internalrep mantissa, int exponent);
explicit constexpr Number(
internalrep mantissa,
int exponent,
unchecked) noexcept;
constexpr internalrep
mantissa() const noexcept;
constexpr int
exponent() const noexcept;
constexpr Number
operator+() const noexcept;
constexpr Number
operator-() const noexcept;
Number&
operator++();
Number
operator++(int);
Number&
operator--();
Number
operator--(int);
Number&
operator+=(Number const& x);
Number&
operator-=(Number const& x);
Number&
operator*=(Number const& x);
Number&
operator/=(Number const& x);
static constexpr Number
min() noexcept;
static constexpr Number
max() noexcept;
static constexpr Number
lowest() noexcept;
/** Conversions to Number are implicit and conversions away from Number
* are explicit. This design encourages and facilitates the use of Number
* as the preferred type for floating point arithmetic as it makes
* "mixed mode" more convenient, e.g. MPTAmount + Number.
*/
explicit
operator rep() const; // round to nearest, even on tie
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
}
friend constexpr bool
operator!=(Number const& x, Number const& y) noexcept
{
return !(x == y);
}
friend constexpr bool
operator<(Number const& x, Number const& y) noexcept
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
if (lneg != rneg)
return lneg;
// Both have same sign and the left is zero: the right must be
// greater than 0.
if (x.mantissa_ == 0)
return y.mantissa_ > 0;
// Both have same sign, the right is zero and the left is non-zero.
if (y.mantissa_ == 0)
return false;
// Both have the same sign, compare by exponents:
if (x.exponent_ > y.exponent_)
return lneg;
if (x.exponent_ < y.exponent_)
return !lneg;
// If equal exponents, compare mantissas
return x.mantissa_ < y.mantissa_;
}
/** Return the sign of the amount */
constexpr int
signum() const noexcept
{
return (mantissa_ < 0) ? -1 : (mantissa_ ? 1 : 0);
}
Number
truncate() const noexcept
{
if (exponent_ >= 0 || mantissa_ == 0)
return *this;
Number ret = *this;
while (ret.exponent_ < 0 && ret.mantissa_ != 0)
{
ret.exponent_ += 1;
ret.mantissa_ /= internalrep(10);
}
// We are guaranteed that normalize() will never throw an exception
// because exponent is either negative or zero at this point.
ret.normalize();
return ret;
}
friend constexpr bool
operator>(Number const& x, Number const& y) noexcept
{
return y < x;
}
friend constexpr bool
operator<=(Number const& x, Number const& y) noexcept
{
return !(y < x);
}
friend constexpr bool
operator>=(Number const& x, Number const& y) noexcept
{
return !(x < y);
}
friend std::ostream&
operator<<(std::ostream& os, Number const& x)
{
return os << to_string(x);
}
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
getround();
// Returns previously set mode
static rounding_mode
setround(rounding_mode mode);
static MantissaRange::mantissa_scale
getMantissaScale();
static void
setMantissaScale(MantissaRange::mantissa_scale scale);
inline static internalrep
minMantissa()
{
return range_.get().min;
}
inline static internalrep
maxMantissa()
{
return range_.get().max;
}
inline static int
mantissaLog()
{
return range_.get().log;
}
/// oneSmall is needed because the ranges are private
constexpr static Number
oneSmall();
/// oneLarge is needed because the ranges are private
constexpr static Number
oneLarge();
// And one is needed because it needs to choose between oneSmall and
// oneLarge based on the current range
static Number
one();
template <class T>
[[nodiscard]]
std::pair<T, int>
normalizeToRange(T minMantissa, T maxMantissa) const;
private:
static thread_local rounding_mode mode_;
// The available ranges for mantissa
constexpr static MantissaRange smallRange{
MantissaRange::small,
1'000'000'000'000'000LL};
static_assert(isPowerOfTen(smallRange.min));
static_assert(smallRange.max == 9'999'999'999'999'999LL);
static_assert(smallRange.log == 15);
// maxint64 9,223,372,036,854,775,808
constexpr static MantissaRange largeRange{
MantissaRange::large,
1'000'000'000'000'000'000LL};
static_assert(isPowerOfTen(largeRange.min));
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
static_assert(largeRange.log == 18);
static_assert(largeRange.min < std::numeric_limits<std::int64_t>::max());
static_assert(largeRange.max > std::numeric_limits<std::int64_t>::max());
// The range for the mantissa when normalized.
// Use reference_wrapper to avoid making copies, and prevent accidentally
// changing the values inside the range.
static thread_local std::reference_wrapper<MantissaRange const> range_;
void
normalize();
static void
normalize(
internalrep& mantissa,
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa);
constexpr bool
isnormal() const noexcept;
class Guard;
};
inline constexpr Number::Number(
internalrep mantissa,
int exponent,
unchecked) noexcept
: mantissa_{mantissa}, exponent_{exponent}
{
}
inline Number::Number(internalrep mantissa, int exponent)
: mantissa_{mantissa}, exponent_{exponent}
{
normalize();
}
inline Number::Number(rep mantissa) : Number{mantissa, 0}
{
}
inline constexpr Number::internalrep
Number::mantissa() const noexcept
{
return mantissa_;
}
inline constexpr int
Number::exponent() const noexcept
{
return exponent_;
}
inline constexpr Number
Number::operator+() const noexcept
{
return *this;
}
inline constexpr Number
Number::operator-() const noexcept
{
auto x = *this;
x.mantissa_ = -x.mantissa_;
return x;
}
inline Number&
Number::operator++()
{
*this += one();
return *this;
}
inline Number
Number::operator++(int)
{
auto x = *this;
++(*this);
return x;
}
inline Number&
Number::operator--()
{
*this -= one();
return *this;
}
inline Number
Number::operator--(int)
{
auto x = *this;
--(*this);
return x;
}
inline Number&
Number::operator-=(Number const& x)
{
return *this += -x;
}
inline Number
operator+(Number const& x, Number const& y)
{
auto z = x;
z += y;
return z;
}
inline Number
operator-(Number const& x, Number const& y)
{
auto z = x;
z -= y;
return z;
}
inline Number
operator*(Number const& x, Number const& y)
{
auto z = x;
z *= y;
return z;
}
inline Number
operator/(Number const& x, Number const& y)
{
auto z = x;
z /= y;
return z;
}
inline constexpr Number
Number::min() noexcept
{
return Number{range_.get().min, minExponent, unchecked{}};
}
inline constexpr Number
Number::max() noexcept
{
return Number{range_.get().max, maxExponent, unchecked{}};
}
inline constexpr Number
Number::lowest() noexcept
{
return -Number{range_.get().max, maxExponent, unchecked{}};
}
inline constexpr bool
Number::isnormal() const noexcept
{
MantissaRange const& range = range_;
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
return range.min <= abs_m && abs_m <= range.max &&
minExponent <= exponent_ && exponent_ <= maxExponent;
}
template <class T>
std::pair<T, int>
Number::normalizeToRange(T minMantissa, T maxMantissa) const
{
internalrep mantissa = mantissa_;
int exponent = exponent_;
Number::normalize(mantissa, exponent, minMantissa, maxMantissa);
return std::make_pair(static_cast<T>(mantissa), exponent);
}
inline constexpr Number
abs(Number x) noexcept
{
if (x < Number{})
x = -x;
return x;
}
// Returns f^n
// Uses a log_2(n) number of multiplications
Number
power(Number const& f, unsigned n);
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the root of the polynomial g(x) = x^d - f
Number
root(Number f, unsigned d);
Number
root2(Number f);
// Returns f^(n/d)
Number
power(Number const& f, unsigned n, unsigned d);
// Return 0 if abs(x) < limit, else returns x
inline constexpr Number
squelch(Number const& x, Number const& limit) noexcept
{
if (abs(x) < limit)
return Number{};
return x;
}
inline std::string
to_string(MantissaRange::mantissa_scale const& scale)
{
switch (scale)
{
case MantissaRange::small:
return "small";
case MantissaRange::large:
return "large";
default:
throw std::runtime_error("Bad scale");
}
}
class saveNumberRoundMode
{
Number::rounding_mode mode_;
public:
~saveNumberRoundMode()
{
Number::setround(mode_);
}
explicit saveNumberRoundMode(Number::rounding_mode mode) noexcept
: mode_{mode}
{
}
saveNumberRoundMode(saveNumberRoundMode const&) = delete;
saveNumberRoundMode&
operator=(saveNumberRoundMode const&) = delete;
};
// saveNumberRoundMode doesn't do quite enough for us. What we want is a
// Number::RoundModeGuard that sets the new mode and restores the old mode
// when it leaves scope. Since Number doesn't have that facility, we'll
// build it here.
class NumberRoundModeGuard
{
saveNumberRoundMode saved_;
public:
explicit NumberRoundModeGuard(Number::rounding_mode mode) noexcept
: saved_{Number::setround(mode)}
{
}
NumberRoundModeGuard(NumberRoundModeGuard const&) = delete;
NumberRoundModeGuard&
operator=(NumberRoundModeGuard const&) = delete;
};
// Sets the new scale and restores the old scale when it leaves scope. Since
// Number doesn't have that facility, we'll build it here.
//
// This class may only end up needed in tests
class NumberMantissaScaleGuard
{
MantissaRange::mantissa_scale saved_;
public:
explicit NumberMantissaScaleGuard(
MantissaRange::mantissa_scale scale) noexcept
: saved_{Number::getMantissaScale()}
{
Number::setMantissaScale(scale);
}
~NumberMantissaScaleGuard()
{
Number::setMantissaScale(saved_);
}
NumberMantissaScaleGuard(NumberMantissaScaleGuard const&) = delete;
NumberMantissaScaleGuard&
operator=(NumberMantissaScaleGuard const&) = delete;
};
} // namespace ripple
#endif // XRPL_BASICS_NUMBER_H_INCLUDED