Files
rippled/src/libxrpl/basics/Number.cpp
Ed Hennis 1e47c76fc4 Rewrite to clarify Number limitations, enforce limits in conversion
- Overflow Number -> int64 if it doesn't fit in the mantissa range.
- Only enabled if at least one of the SingleAssetVault or
  LendingProtocol amendments are enabled.
- Will throw the overflow error if the value is larger than maxMantissa.
  Current behavior is to throw if the value is larger than max int64_t
  value.
2025-11-18 23:12:28 -05:00

814 lines
18 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <xrpl/basics/Number.h>
#include <xrpl/beast/utility/instrumentation.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <numeric>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#ifdef _MSC_VER
#pragma message("Using boost::multiprecision::uint128_t")
#include <boost/multiprecision/cpp_int.hpp>
using uint128_t = boost::multiprecision::uint128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
#endif // !defined(_MSC_VER)
namespace ripple {
thread_local Number::rounding_mode Number::mode_ = Number::to_nearest;
thread_local bool Number::overflowLargeIntegers_ = false;
Number::rounding_mode
Number::getround()
{
return mode_;
}
Number::rounding_mode
Number::setround(rounding_mode mode)
{
return std::exchange(mode_, mode);
}
bool
Number::getEnforceIntegerOverflow()
{
return overflowLargeIntegers_;
}
void
Number::setEnforceIntegerOverflow(bool enforce)
{
std::exchange(overflowLargeIntegers_, enforce);
}
// Guard
// The Guard class is used to tempoarily add extra digits of
// preicision to an operation. This enables the final result
// to be correctly rounded to the internal precision of Number.
class Number::Guard
{
std::uint64_t digits_; // 16 decimal guard digits
std::uint8_t xbit_ : 1; // has a non-zero digit been shifted off the end
std::uint8_t sbit_ : 1; // the sign of the guard digits
public:
explicit Guard() : digits_{0}, xbit_{0}, sbit_{0}
{
}
// set & test the sign bit
void
set_positive() noexcept;
void
set_negative() noexcept;
bool
is_negative() const noexcept;
// add a digit
void
push(unsigned d) noexcept;
// recover a digit
unsigned
pop() noexcept;
// Indicate round direction: 1 is up, -1 is down, 0 is even
// This enables the client to round towards nearest, and on
// tie, round towards even.
int
round() noexcept;
};
inline void
Number::Guard::set_positive() noexcept
{
sbit_ = 0;
}
inline void
Number::Guard::set_negative() noexcept
{
sbit_ = 1;
}
inline bool
Number::Guard::is_negative() const noexcept
{
return sbit_ == 1;
}
inline void
Number::Guard::push(unsigned d) noexcept
{
xbit_ = xbit_ || (digits_ & 0x0000'0000'0000'000F) != 0;
digits_ >>= 4;
digits_ |= (d & 0x0000'0000'0000'000FULL) << 60;
}
inline unsigned
Number::Guard::pop() noexcept
{
unsigned d = (digits_ & 0xF000'0000'0000'0000) >> 60;
digits_ <<= 4;
return d;
}
// Returns:
// -1 if Guard is less than half
// 0 if Guard is exactly half
// 1 if Guard is greater than half
int
Number::Guard::round() noexcept
{
auto mode = Number::getround();
if (mode == towards_zero)
return -1;
if (mode == downward)
{
if (sbit_)
{
if (digits_ > 0 || xbit_)
return 1;
}
return -1;
}
if (mode == upward)
{
if (sbit_)
return -1;
if (digits_ > 0 || xbit_)
return 1;
return -1;
}
// assume round to nearest if mode is not one of the predefined values
if (digits_ > 0x5000'0000'0000'0000)
return 1;
if (digits_ < 0x5000'0000'0000'0000)
return -1;
if (xbit_)
return 1;
return 0;
}
// Number
constexpr Number one{1000000000000000, -15, Number::unchecked{}};
void
Number::normalize()
{
if (mantissa_ == 0)
{
*this = Number{};
return;
}
bool const negative = (mantissa_ < 0);
auto m = static_cast<std::make_unsigned_t<rep>>(
negative ? -mantissa_ : mantissa_);
while ((m < minMantissa) && (exponent_ > minExponent))
{
m *= 10;
--exponent_;
}
Guard g;
if (negative)
g.set_negative();
while (m > maxMantissa)
{
if (exponent_ >= maxExponent)
throw std::overflow_error("Number::normalize 1");
g.push(m % 10);
m /= 10;
++exponent_;
}
mantissa_ = m;
if ((exponent_ < minExponent) || (mantissa_ < minMantissa))
{
*this = Number{};
return;
}
auto r = g.round();
if (r == 1 || (r == 0 && (mantissa_ & 1) == 1))
{
++mantissa_;
if (mantissa_ > maxMantissa)
{
mantissa_ /= 10;
++exponent_;
}
}
if (exponent_ > maxExponent)
throw std::overflow_error("Number::normalize 2");
if (negative)
mantissa_ = -mantissa_;
}
bool
Number::fits() const noexcept
{
return fits(limited_);
}
bool
Number::fits(bool limited)
{
setLimited(limited);
return fits();
}
bool
Number::fits(bool limited) const
{
if (!limited)
return true;
static Number const max = maxIntValue;
static Number const maxNeg = -max;
// Avoid making a copy
if (mantissa_ < 0)
return *this >= maxNeg;
return *this <= max;
}
bool
Number::representable() const noexcept
{
if (!limited_)
return true;
static Number const max = maxMantissa;
static Number const maxNeg = -max;
// Avoid making a copy
if (mantissa_ < 0)
return *this >= maxNeg;
return *this <= max;
}
Number&
Number::operator+=(Number const& y)
{
// The strictest setting prevails
if (!limited_)
limited_ = y.limited_;
if (y == Number{})
return *this;
if (*this == Number{})
{
*this = y;
return *this;
}
if (*this == -y)
{
*this = Number{};
return *this;
}
XRPL_ASSERT(
isnormal() && y.isnormal(),
"ripple::Number::operator+=(Number) : is normal");
auto xm = mantissa();
auto xe = exponent();
int xn = 1;
if (xm < 0)
{
xm = -xm;
xn = -1;
}
auto ym = y.mantissa();
auto ye = y.exponent();
int yn = 1;
if (ym < 0)
{
ym = -ym;
yn = -1;
}
Guard g;
if (xe < ye)
{
if (xn == -1)
g.set_negative();
do
{
g.push(xm % 10);
xm /= 10;
++xe;
} while (xe < ye);
}
else if (xe > ye)
{
if (yn == -1)
g.set_negative();
do
{
g.push(ym % 10);
ym /= 10;
++ye;
} while (xe > ye);
}
if (xn == yn)
{
xm += ym;
if (xm > maxMantissa)
{
g.push(xm % 10);
xm /= 10;
++xe;
}
auto r = g.round();
if (r == 1 || (r == 0 && (xm & 1) == 1))
{
++xm;
if (xm > maxMantissa)
{
xm /= 10;
++xe;
}
}
if (xe > maxExponent)
throw std::overflow_error("Number::addition overflow");
}
else
{
if (xm > ym)
{
xm = xm - ym;
}
else
{
xm = ym - xm;
xe = ye;
xn = yn;
}
while (xm < minMantissa)
{
xm *= 10;
xm -= g.pop();
--xe;
}
auto r = g.round();
if (r == 1 || (r == 0 && (xm & 1) == 1))
{
--xm;
if (xm < minMantissa)
{
xm *= 10;
--xe;
}
}
if (xe < minExponent)
{
xm = 0;
xe = Number{}.exponent_;
}
}
mantissa_ = xm * xn;
exponent_ = xe;
return *this;
}
// Optimization equivalent to:
// auto r = static_cast<unsigned>(u % 10);
// u /= 10;
// return r;
// Derived from Hacker's Delight Second Edition Chapter 10
// by Henry S. Warren, Jr.
static inline unsigned
divu10(uint128_t& u)
{
// q = u * 0.75
auto q = (u >> 1) + (u >> 2);
// iterate towards q = u * 0.8
q += q >> 4;
q += q >> 8;
q += q >> 16;
q += q >> 32;
q += q >> 64;
// q /= 8 approximately == u / 10
q >>= 3;
// r = u - q * 10 approximately == u % 10
auto r = static_cast<unsigned>(u - ((q << 3) + (q << 1)));
// correction c is 1 if r >= 10 else 0
auto c = (r + 6) >> 4;
u = q + c;
r -= c * 10;
return r;
}
Number&
Number::operator*=(Number const& y)
{
// The strictest setting prevails
if (!limited_)
limited_ = y.limited_;
if (*this == Number{})
return *this;
if (y == Number{})
{
*this = y;
return *this;
}
XRPL_ASSERT(
isnormal() && y.isnormal(),
"ripple::Number::operator*=(Number) : is normal");
auto xm = mantissa();
auto xe = exponent();
int xn = 1;
if (xm < 0)
{
xm = -xm;
xn = -1;
}
auto ym = y.mantissa();
auto ye = y.exponent();
int yn = 1;
if (ym < 0)
{
ym = -ym;
yn = -1;
}
auto zm = uint128_t(xm) * uint128_t(ym);
auto ze = xe + ye;
auto zn = xn * yn;
Guard g;
if (zn == -1)
g.set_negative();
while (zm > maxMantissa)
{
// The following is optimization for:
// g.push(static_cast<unsigned>(zm % 10));
// zm /= 10;
g.push(divu10(zm));
++ze;
}
xm = static_cast<rep>(zm);
xe = ze;
auto r = g.round();
if (r == 1 || (r == 0 && (xm & 1) == 1))
{
++xm;
if (xm > maxMantissa)
{
xm /= 10;
++xe;
}
}
if (xe < minExponent)
{
xm = 0;
xe = Number{}.exponent_;
}
if (xe > maxExponent)
throw std::overflow_error(
"Number::multiplication overflow : exponent is " +
std::to_string(xe));
mantissa_ = xm * zn;
exponent_ = xe;
XRPL_ASSERT(
isnormal() || *this == Number{},
"ripple::Number::operator*=(Number) : result is normal");
return *this;
}
Number&
Number::operator/=(Number const& y)
{
// The strictest setting prevails
if (!limited_)
limited_ = y.limited_;
if (y == Number{})
throw std::overflow_error("Number: divide by 0");
if (*this == Number{})
return *this;
int np = 1;
auto nm = mantissa();
auto ne = exponent();
if (nm < 0)
{
nm = -nm;
np = -1;
}
int dp = 1;
auto dm = y.mantissa();
auto de = y.exponent();
if (dm < 0)
{
dm = -dm;
dp = -1;
}
// Shift by 10^17 gives greatest precision while not overflowing uint128_t
// or the cast back to int64_t
uint128_t const f = 100'000'000'000'000'000;
mantissa_ = static_cast<std::int64_t>(uint128_t(nm) * f / uint128_t(dm));
exponent_ = ne - de - 17;
mantissa_ *= np * dp;
normalize();
return *this;
}
Number::operator rep() const
{
if (Number::overflowLargeIntegers_ && !representable())
throw std::overflow_error(
"Number::operator rep() overflow unrepresentable");
rep drops = mantissa_;
int offset = exponent_;
Guard g;
if (drops != 0)
{
if (drops < 0)
{
g.set_negative();
drops = -drops;
}
for (; offset < 0; ++offset)
{
g.push(drops % 10);
drops /= 10;
}
for (; offset > 0; --offset)
{
if (drops > std::numeric_limits<decltype(drops)>::max() / 10)
throw std::overflow_error("Number::operator rep() overflow");
drops *= 10;
}
auto r = g.round();
if (r == 1 || (r == 0 && (drops & 1) == 1))
{
++drops;
}
if (g.is_negative())
drops = -drops;
}
return drops;
}
std::string
to_string(Number const& amount)
{
// keep full internal accuracy, but make more human friendly if possible
if (amount == Number{})
return "0";
auto const exponent = amount.exponent();
auto mantissa = amount.mantissa();
// Use scientific notation for exponents that are too small or too large
if (((exponent != 0) && ((exponent < -25) || (exponent > -5))))
{
std::string ret = std::to_string(mantissa);
ret.append(1, 'e');
ret.append(std::to_string(exponent));
return ret;
}
bool negative = false;
if (mantissa < 0)
{
mantissa = -mantissa;
negative = true;
}
XRPL_ASSERT(
exponent + 43 > 0, "ripple::to_string(Number) : minimum exponent");
ptrdiff_t const pad_prefix = 27;
ptrdiff_t const pad_suffix = 23;
std::string const raw_value(std::to_string(mantissa));
std::string val;
val.reserve(raw_value.length() + pad_prefix + pad_suffix);
val.append(pad_prefix, '0');
val.append(raw_value);
val.append(pad_suffix, '0');
ptrdiff_t const offset(exponent + 43);
auto pre_from(val.begin());
auto const pre_to(val.begin() + offset);
auto const post_from(val.begin() + offset);
auto post_to(val.end());
// Crop leading zeroes. Take advantage of the fact that there's always a
// fixed amount of leading zeroes and skip them.
if (std::distance(pre_from, pre_to) > pad_prefix)
pre_from += pad_prefix;
XRPL_ASSERT(
post_to >= post_from,
"ripple::to_string(Number) : first distance check");
pre_from = std::find_if(pre_from, pre_to, [](char c) { return c != '0'; });
// Crop trailing zeroes. Take advantage of the fact that there's always a
// fixed amount of trailing zeroes and skip them.
if (std::distance(post_from, post_to) > pad_suffix)
post_to -= pad_suffix;
XRPL_ASSERT(
post_to >= post_from,
"ripple::to_string(Number) : second distance check");
post_to = std::find_if(
std::make_reverse_iterator(post_to),
std::make_reverse_iterator(post_from),
[](char c) { return c != '0'; })
.base();
std::string ret;
if (negative)
ret.append(1, '-');
// Assemble the output:
if (pre_from == pre_to)
ret.append(1, '0');
else
ret.append(pre_from, pre_to);
if (post_to != post_from)
{
ret.append(1, '.');
ret.append(post_from, post_to);
}
return ret;
}
// Returns f^n
// Uses a log_2(n) number of multiplications
Number
power(Number const& f, unsigned n)
{
if (n == 0)
return one;
if (n == 1)
return f;
auto r = power(f, n / 2);
r *= r;
if (n % 2 != 0)
r *= f;
return r;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
root(Number f, unsigned d)
{
if (f == one || d == 1)
return f;
if (d == 0)
{
if (f == -one)
return one;
if (abs(f) < one)
return Number{};
throw std::overflow_error("Number::root infinity");
}
if (f < Number{} && d % 2 == 0)
throw std::overflow_error("Number::root nan");
if (f == Number{})
return f;
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent() + 16;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = Number{f.mantissa(), f.exponent() - e}; // f /= 10^e;
bool neg = false;
if (f < Number{})
{
neg = true;
f = -f;
}
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
auto const D = ((6 * di + 11) * di + 6) * di + 1;
auto const a0 = 3 * di * ((2 * di - 3) * di + 1);
auto const a1 = 24 * di * (2 * di - 1);
auto const a2 = -30 * (di - 1) * di;
Number r = ((Number{a2} * f + Number{a1}) * f + Number{a0}) / Number{D};
if (neg)
{
f = -f;
r = -r;
}
// NewtonRaphson iteration of f^(1/d) with initial guess r
// halt when r stops changing, checking for bouncing on the last iteration
Number rm1{};
Number rm2{};
do
{
rm2 = rm1;
rm1 = r;
r = (Number(d - 1) * r + f / power(r, d - 1)) / Number(d);
} while (r != rm1 && r != rm2);
// return r * 10^(e/d) to reverse scaling
return Number{r.mantissa(), r.exponent() + e / di};
}
Number
root2(Number f)
{
if (f == one)
return f;
if (f < Number{})
throw std::overflow_error("Number::root nan");
if (f == Number{})
return f;
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent() + 16;
if (e % 2 != 0)
++e;
f = Number{f.mantissa(), f.exponent() - e}; // f /= 10^e;
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
auto const D = 105;
auto const a0 = 18;
auto const a1 = 144;
auto const a2 = -60;
Number r = ((Number{a2} * f + Number{a1}) * f + Number{a0}) / Number{D};
// NewtonRaphson iteration of f^(1/2) with initial guess r
// halt when r stops changing, checking for bouncing on the last iteration
Number rm1{};
Number rm2{};
do
{
rm2 = rm1;
rm1 = r;
r = (r + f / r) / Number(2);
} while (r != rm1 && r != rm2);
// return r * 10^(e/2) to reverse scaling
return Number{r.mantissa(), r.exponent() + e / 2};
}
// Returns f^(n/d)
Number
power(Number const& f, unsigned n, unsigned d)
{
if (f == one)
return f;
auto g = std::gcd(n, d);
if (g == 0)
throw std::overflow_error("Number::power nan");
if (d == 0)
{
if (f == -one)
return one;
if (abs(f) < one)
return Number{};
// abs(f) > one
throw std::overflow_error("Number::power infinity");
}
if (n == 0)
return one;
n /= g;
d /= g;
if ((n % 2) == 1 && (d % 2) == 0 && f < Number{})
throw std::overflow_error("Number::power nan");
return root(power(f, n), d);
}
} // namespace ripple