Files
rippled/include/xrpl/protocol/Quality.h
Bronek Kozicki d7e949193f Add Antithesis intrumentation (#5042)
* Copy Antithesis SDK version 0.4.0 to directory external/
* Add build option `voidstar` to enable instrumentation with Antithesis SDK
* Define instrumentation macros ASSERT and UNREACHABLE in terms of regular C assert
* Replace asserts with named ASSERT or UNREACHABLE
* Add UNREACHABLE to LogicError
* Document instrumentation macros in CONTRIBUTING.md
2024-12-03 14:54:44 -05:00

420 lines
12 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_QUALITY_H_INCLUDED
#define RIPPLE_PROTOCOL_QUALITY_H_INCLUDED
#include <xrpl/basics/IOUAmount.h>
#include <xrpl/basics/XRPAmount.h>
#include <xrpl/protocol/AmountConversions.h>
#include <xrpl/protocol/STAmount.h>
#include <algorithm>
#include <cstdint>
#include <ostream>
namespace ripple {
/** Represents a pair of input and output currencies.
The input currency can be converted to the output
currency by multiplying by the rate, represented by
Quality.
For offers, "in" is always TakerPays and "out" is
always TakerGets.
*/
template <class In, class Out>
struct TAmounts
{
TAmounts() = default;
TAmounts(beast::Zero, beast::Zero) : in(beast::zero), out(beast::zero)
{
}
TAmounts(In const& in_, Out const& out_) : in(in_), out(out_)
{
}
/** Returns `true` if either quantity is not positive. */
bool
empty() const noexcept
{
return in <= beast::zero || out <= beast::zero;
}
TAmounts&
operator+=(TAmounts const& rhs)
{
in += rhs.in;
out += rhs.out;
return *this;
}
TAmounts&
operator-=(TAmounts const& rhs)
{
in -= rhs.in;
out -= rhs.out;
return *this;
}
In in;
Out out;
};
using Amounts = TAmounts<STAmount, STAmount>;
template <class In, class Out>
bool
operator==(TAmounts<In, Out> const& lhs, TAmounts<In, Out> const& rhs) noexcept
{
return lhs.in == rhs.in && lhs.out == rhs.out;
}
template <class In, class Out>
bool
operator!=(TAmounts<In, Out> const& lhs, TAmounts<In, Out> const& rhs) noexcept
{
return !(lhs == rhs);
}
//------------------------------------------------------------------------------
// Ripple specific constant used for parsing qualities and other things
#define QUALITY_ONE 1'000'000'000
/** Represents the logical ratio of output currency to input currency.
Internally this is stored using a custom floating point representation,
as the inverse of the ratio, so that quality will be descending in
a sequence of actual values that represent qualities.
*/
class Quality
{
public:
// Type of the internal representation. Higher qualities
// have lower unsigned integer representations.
using value_type = std::uint64_t;
static const int minTickSize = 3;
static const int maxTickSize = 16;
private:
// This has the same representation as STAmount, see the comment on the
// STAmount. However, this class does not always use the canonical
// representation. In particular, the increment and decrement operators may
// cause a non-canonical representation.
value_type m_value;
public:
Quality() = default;
/** Create a quality from the integer encoding of an STAmount */
explicit Quality(std::uint64_t value);
/** Create a quality from the ratio of two amounts. */
explicit Quality(Amounts const& amount);
/** Create a quality from the ratio of two amounts. */
template <class In, class Out>
explicit Quality(TAmounts<In, Out> const& amount)
: Quality(Amounts(toSTAmount(amount.in), toSTAmount(amount.out)))
{
}
/** Create a quality from the ratio of two amounts. */
template <class In, class Out>
Quality(Out const& out, In const& in)
: Quality(Amounts(toSTAmount(in), toSTAmount(out)))
{
}
/** Advances to the next higher quality level. */
/** @{ */
Quality&
operator++();
Quality
operator++(int);
/** @} */
/** Advances to the next lower quality level. */
/** @{ */
Quality&
operator--();
Quality
operator--(int);
/** @} */
/** Returns the quality as STAmount. */
STAmount
rate() const
{
return amountFromQuality(m_value);
}
/** Returns the quality rounded up to the specified number
of decimal digits.
*/
Quality
round(int tickSize) const;
/** Returns the scaled amount with in capped.
Math is avoided if the result is exact. The output is clamped
to prevent money creation.
*/
[[nodiscard]] Amounts
ceil_in(Amounts const& amount, STAmount const& limit) const;
template <class In, class Out>
[[nodiscard]] TAmounts<In, Out>
ceil_in(TAmounts<In, Out> const& amount, In const& limit) const;
// Some of the underlying rounding functions called by ceil_in() ignored
// low order bits that could influence rounding decisions. This "strict"
// method uses underlying functions that pay attention to all the bits.
[[nodiscard]] Amounts
ceil_in_strict(Amounts const& amount, STAmount const& limit, bool roundUp)
const;
template <class In, class Out>
[[nodiscard]] TAmounts<In, Out>
ceil_in_strict(
TAmounts<In, Out> const& amount,
In const& limit,
bool roundUp) const;
/** Returns the scaled amount with out capped.
Math is avoided if the result is exact. The input is clamped
to prevent money creation.
*/
[[nodiscard]] Amounts
ceil_out(Amounts const& amount, STAmount const& limit) const;
template <class In, class Out>
[[nodiscard]] TAmounts<In, Out>
ceil_out(TAmounts<In, Out> const& amount, Out const& limit) const;
// Some of the underlying rounding functions called by ceil_out() ignored
// low order bits that could influence rounding decisions. This "strict"
// method uses underlying functions that pay attention to all the bits.
[[nodiscard]] Amounts
ceil_out_strict(Amounts const& amount, STAmount const& limit, bool roundUp)
const;
template <class In, class Out>
[[nodiscard]] TAmounts<In, Out>
ceil_out_strict(
TAmounts<In, Out> const& amount,
Out const& limit,
bool roundUp) const;
private:
// The ceil_in and ceil_out methods that deal in TAmount all convert
// their arguments to STAoumout and convert the result back to TAmount.
// This helper function takes care of all the conversion operations.
template <
class In,
class Out,
class Lim,
typename FnPtr,
std::same_as<bool>... Round>
[[nodiscard]] TAmounts<In, Out>
ceil_TAmounts_helper(
TAmounts<In, Out> const& amount,
Lim const& limit,
Lim const& limit_cmp,
FnPtr ceil_function,
Round... round) const;
public:
/** Returns `true` if lhs is lower quality than `rhs`.
Lower quality means the taker receives a worse deal.
Higher quality is better for the taker.
*/
friend bool
operator<(Quality const& lhs, Quality const& rhs) noexcept
{
return lhs.m_value > rhs.m_value;
}
friend bool
operator>(Quality const& lhs, Quality const& rhs) noexcept
{
return lhs.m_value < rhs.m_value;
}
friend bool
operator<=(Quality const& lhs, Quality const& rhs) noexcept
{
return !(lhs > rhs);
}
friend bool
operator>=(Quality const& lhs, Quality const& rhs) noexcept
{
return !(lhs < rhs);
}
friend bool
operator==(Quality const& lhs, Quality const& rhs) noexcept
{
return lhs.m_value == rhs.m_value;
}
friend bool
operator!=(Quality const& lhs, Quality const& rhs) noexcept
{
return !(lhs == rhs);
}
friend std::ostream&
operator<<(std::ostream& os, Quality const& quality)
{
os << quality.m_value;
return os;
}
// return the relative distance (relative error) between two qualities. This
// is used for testing only. relative distance is abs(a-b)/min(a,b)
friend double
relativeDistance(Quality const& q1, Quality const& q2)
{
ASSERT(
q1.m_value > 0 && q2.m_value > 0,
"ripple::Quality::relativeDistance : minimum inputs");
if (q1.m_value == q2.m_value) // make expected common case fast
return 0;
auto const [minV, maxV] = std::minmax(q1.m_value, q2.m_value);
auto mantissa = [](std::uint64_t rate) {
return rate & ~(255ull << (64 - 8));
};
auto exponent = [](std::uint64_t rate) {
return static_cast<int>(rate >> (64 - 8)) - 100;
};
auto const minVMantissa = mantissa(minV);
auto const maxVMantissa = mantissa(maxV);
auto const expDiff = exponent(maxV) - exponent(minV);
double const minVD = static_cast<double>(minVMantissa);
double const maxVD = expDiff ? maxVMantissa * pow(10, expDiff)
: static_cast<double>(maxVMantissa);
// maxVD and minVD are scaled so they have the same exponents. Dividing
// cancels out the exponents, so we only need to deal with the (scaled)
// mantissas
return (maxVD - minVD) / minVD;
}
};
template <
class In,
class Out,
class Lim,
typename FnPtr,
std::same_as<bool>... Round>
TAmounts<In, Out>
Quality::ceil_TAmounts_helper(
TAmounts<In, Out> const& amount,
Lim const& limit,
Lim const& limit_cmp,
FnPtr ceil_function,
Round... roundUp) const
{
if (limit_cmp <= limit)
return amount;
// Use the existing STAmount implementation for now, but consider
// replacing with code specific to IOUAMount and XRPAmount
Amounts stAmt(toSTAmount(amount.in), toSTAmount(amount.out));
STAmount stLim(toSTAmount(limit));
Amounts const stRes = ((*this).*ceil_function)(stAmt, stLim, roundUp...);
return TAmounts<In, Out>(toAmount<In>(stRes.in), toAmount<Out>(stRes.out));
}
template <class In, class Out>
TAmounts<In, Out>
Quality::ceil_in(TAmounts<In, Out> const& amount, In const& limit) const
{
// Construct a function pointer to the function we want to call.
static constexpr Amounts (Quality::*ceil_in_fn_ptr)(
Amounts const&, STAmount const&) const = &Quality::ceil_in;
return ceil_TAmounts_helper(amount, limit, amount.in, ceil_in_fn_ptr);
}
template <class In, class Out>
TAmounts<In, Out>
Quality::ceil_in_strict(
TAmounts<In, Out> const& amount,
In const& limit,
bool roundUp) const
{
// Construct a function pointer to the function we want to call.
static constexpr Amounts (Quality::*ceil_in_fn_ptr)(
Amounts const&, STAmount const&, bool) const = &Quality::ceil_in_strict;
return ceil_TAmounts_helper(
amount, limit, amount.in, ceil_in_fn_ptr, roundUp);
}
template <class In, class Out>
TAmounts<In, Out>
Quality::ceil_out(TAmounts<In, Out> const& amount, Out const& limit) const
{
// Construct a function pointer to the function we want to call.
static constexpr Amounts (Quality::*ceil_out_fn_ptr)(
Amounts const&, STAmount const&) const = &Quality::ceil_out;
return ceil_TAmounts_helper(amount, limit, amount.out, ceil_out_fn_ptr);
}
template <class In, class Out>
TAmounts<In, Out>
Quality::ceil_out_strict(
TAmounts<In, Out> const& amount,
Out const& limit,
bool roundUp) const
{
// Construct a function pointer to the function we want to call.
static constexpr Amounts (Quality::*ceil_out_fn_ptr)(
Amounts const&, STAmount const&, bool) const =
&Quality::ceil_out_strict;
return ceil_TAmounts_helper(
amount, limit, amount.out, ceil_out_fn_ptr, roundUp);
}
/** Calculate the quality of a two-hop path given the two hops.
@param lhs The first leg of the path: input to intermediate.
@param rhs The second leg of the path: intermediate to output.
*/
Quality
composed_quality(Quality const& lhs, Quality const& rhs);
} // namespace ripple
#endif