Files
rippled/beast/Arithmetic.h
Vinnie Falco ce8f56727e Make all include paths relative to a root directory:
* Better include path support in the VSProject scons tool.
* Various manual fixes to include paths.
2014-06-02 09:16:28 -07:00

270 lines
8.7 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of Beast: https://github.com/vinniefalco/Beast
Copyright 2013, Vinnie Falco <vinnie.falco@gmail.com>
Portions of this file are from JUCE.
Copyright (c) 2013 - Raw Material Software Ltd.
Please visit http://www.juce.com
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef BEAST_ARITHMETIC_H_INCLUDED
#define BEAST_ARITHMETIC_H_INCLUDED
#include <beast/Config.h>
#include <beast/utility/noexcept.h>
#include <cmath>
#include <cstdint>
#include <algorithm>
namespace beast {
// Some indispensible min/max functions
/** Returns the larger of two values. */
template <typename Type>
inline Type bmax (const Type a, const Type b)
{ return (a < b) ? b : a; }
/** Returns the larger of three values. */
template <typename Type>
inline Type bmax (const Type a, const Type b, const Type c)
{ return (a < b) ? ((b < c) ? c : b) : ((a < c) ? c : a); }
/** Returns the larger of four values. */
template <typename Type>
inline Type bmax (const Type a, const Type b, const Type c, const Type d)
{ return bmax (a, bmax (b, c, d)); }
/** Returns the smaller of two values. */
template <typename Type>
inline Type bmin (const Type a, const Type b)
{ return (b < a) ? b : a; }
/** Returns the smaller of three values. */
template <typename Type>
inline Type bmin (const Type a, const Type b, const Type c)
{ return (b < a) ? ((c < b) ? c : b) : ((c < a) ? c : a); }
/** Returns the smaller of four values. */
template <typename Type>
inline Type bmin (const Type a, const Type b, const Type c, const Type d)
{ return bmin (a, bmin (b, c, d)); }
/** Scans an array of values, returning the minimum value that it contains. */
template <typename Type>
const Type findMinimum (const Type* data, int numValues)
{
if (numValues <= 0)
return Type();
Type result (*data++);
while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
{
const Type& v = *data++;
if (v < result) result = v;
}
return result;
}
/** Scans an array of values, returning the maximum value that it contains. */
template <typename Type>
const Type findMaximum (const Type* values, int numValues)
{
if (numValues <= 0)
return Type();
Type result (*values++);
while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
{
const Type& v = *values++;
if (result < v) result = v;
}
return result;
}
/** Scans an array of values, returning the minimum and maximum values that it contains. */
template <typename Type>
void findMinAndMax (const Type* values, int numValues, Type& lowest, Type& highest)
{
if (numValues <= 0)
{
lowest = Type();
highest = Type();
}
else
{
Type mn (*values++);
Type mx (mn);
while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
{
const Type& v = *values++;
if (mx < v) mx = v;
if (v < mn) mn = v;
}
lowest = mn;
highest = mx;
}
}
//==============================================================================
/** Constrains a value to keep it within a given range.
This will check that the specified value lies between the lower and upper bounds
specified, and if not, will return the nearest value that would be in-range. Effectively,
it's like calling bmax (lowerLimit, bmin (upperLimit, value)).
Note that it expects that lowerLimit <= upperLimit. If this isn't true,
the results will be unpredictable.
@param lowerLimit the minimum value to return
@param upperLimit the maximum value to return
@param valueToConstrain the value to try to return
@returns the closest value to valueToConstrain which lies between lowerLimit
and upperLimit (inclusive)
@see blimit0To, bmin, bmax
*/
template <typename Type>
inline Type blimit (const Type lowerLimit,
const Type upperLimit,
const Type valueToConstrain) noexcept
{
bassert (lowerLimit <= upperLimit); // if these are in the wrong order, results are unpredictable..
return (valueToConstrain < lowerLimit) ? lowerLimit
: ((upperLimit < valueToConstrain) ? upperLimit
: valueToConstrain);
}
/** Returns true if a value is at least zero, and also below a specified upper limit.
This is basically a quicker way to write:
@code valueToTest >= 0 && valueToTest < upperLimit
@endcode
*/
template <typename Type>
inline bool isPositiveAndBelow (Type valueToTest, Type upperLimit) noexcept
{
bassert (Type() <= upperLimit); // makes no sense to call this if the upper limit is itself below zero..
return Type() <= valueToTest && valueToTest < upperLimit;
}
template <>
inline bool isPositiveAndBelow (const int valueToTest, const int upperLimit) noexcept
{
bassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero..
return static_cast <unsigned int> (valueToTest) < static_cast <unsigned int> (upperLimit);
}
/** Returns true if a value is at least zero, and also less than or equal to a specified upper limit.
This is basically a quicker way to write:
@code valueToTest >= 0 && valueToTest <= upperLimit
@endcode
*/
template <typename Type>
inline bool isPositiveAndNotGreaterThan (Type valueToTest, Type upperLimit) noexcept
{
bassert (Type() <= upperLimit); // makes no sense to call this if the upper limit is itself below zero..
return Type() <= valueToTest && valueToTest <= upperLimit;
}
template <>
inline bool isPositiveAndNotGreaterThan (const int valueToTest, const int upperLimit) noexcept
{
bassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero..
return static_cast <unsigned int> (valueToTest) <= static_cast <unsigned int> (upperLimit);
}
//==============================================================================
/** Handy function for getting the number of elements in a simple const C array.
E.g.
@code
static int myArray[] = { 1, 2, 3 };
int numElements = numElementsInArray (myArray) // returns 3
@endcode
*/
template <typename Type, int N>
int numElementsInArray (Type (&array)[N])
{
(void) array; // (required to avoid a spurious warning in MS compilers)
(void) sizeof (0[array]); // This line should cause an error if you pass an object with a user-defined subscript operator
return N;
}
/** 64-bit abs function. */
inline std::int64_t abs64 (const std::int64_t n) noexcept
{
return (n >= 0) ? n : -n;
}
//==============================================================================
#if BEAST_MSVC
#pragma optimize ("t", off)
#ifndef __INTEL_COMPILER
#pragma float_control (precise, on, push)
#endif
#endif
/** Fast floating-point-to-integer conversion.
This is faster than using the normal c++ cast to convert a float to an int, and
it will round the value to the nearest integer, rather than rounding it down
like the normal cast does.
Note that this routine gets its speed at the expense of some accuracy, and when
rounding values whose floating point component is exactly 0.5, odd numbers and
even numbers will be rounded up or down differently.
*/
template <typename FloatType>
inline int roundToInt (const FloatType value) noexcept
{
#ifdef __INTEL_COMPILER
#pragma float_control (precise, on, push)
#endif
union { int asInt[2]; double asDouble; } n;
n.asDouble = ((double) value) + 6755399441055744.0;
#if BEAST_BIG_ENDIAN
return n.asInt [1];
#else
return n.asInt [0];
#endif
}
#if BEAST_MSVC
#ifndef __INTEL_COMPILER
#pragma float_control (pop)
#endif
#pragma optimize ("", on) // resets optimisations to the project defaults
#endif
}
#endif