Files
rippled/include/xrpl/protocol/STValidation.h
Mayukha Vadari 911c0466c0 Merge develop into ripple/smart-escrow (#5357)
* Set version to 2.4.0

* refactor: Remove unused and add missing includes (#5293)

The codebase is filled with includes that are unused, and which thus can be removed. At the same time, the files often do not include all headers that contain the definitions used in those files. This change uses clang-format and clang-tidy to clean up the includes, with minor manual intervention to ensure the code compiles on all platforms.

* refactor: Calculate numFeatures automatically (#5324)

Requiring manual updates of numFeatures is an annoying manual process that is easily forgotten, and leads to frequent merge conflicts. This change takes advantage of the `XRPL_FEATURE` and `XRPL_FIX` macros, and adds a new `XRPL_RETIRE` macro to automatically set `numFeatures`.

* refactor: Improve ordering of headers with clang-format (#5343)

Removes all manual header groupings from source and header files by leveraging clang-format options.

* Rename "deadlock" to "stall" in `LoadManager` (#5341)

What the LoadManager class does is stall detection, which is not the same as deadlock detection. In the condition of severe CPU starvation, LoadManager will currently intentionally crash rippled reporting `LogicError: Deadlock detected`. This error message is misleading as the condition being detected is not a deadlock. This change fixes and refactors the code in response.

* Adds hub.xrpl-commons.org as a new Bootstrap Cluster (#5263)

* fix: Error message for ledger_entry rpc (#5344)

Changes the error to `malformedAddress` for `permissioned_domain` in the `ledger_entry` rpc, when the account is not a string. This change makes it more clear to a user what is wrong with their request.

* fix: Handle invalid marker parameter in grpc call (#5317)

The `end_marker` is used to limit the range of ledger entries to fetch. If `end_marker` is less than `marker`, a crash can occur. This change adds an additional check.

* fix: trust line RPC no ripple flag (#5345)

The Trustline RPC `no_ripple` flag gets set depending on `lsfDefaultRipple` flag, which is not a flag of a trustline but of the account root. The `lsfDefaultRipple` flag does not provide any insight if this particular trust line has `lsfLowNoRipple` or `lsfHighNoRipple` flag set, so it should not be used here at all. This change simplifies the logic.

* refactor: Updates Conan dependencies: RocksDB (#5335)

Updates RocksDB to version 9.7.3, the latest version supported in Conan 1.x. A patch for 9.7.4 that fixes a memory leak is included.

* fix: Remove null pointer deref, just do abort (#5338)

This change removes the existing undefined behavior from `LogicError`, so we can be certain that there will be always a stacktrace.

De-referencing a null pointer is an old trick to generate `SIGSEGV`, which would typically also create a stacktrace. However it is also an undefined behaviour and compilers can do something else. A more robust way to create a stacktrace while crashing the program is to use `std::abort`, which we have also used in this location for a long time. If we combine the two, we might not get the expected behaviour - namely, the nullpointer deref followed by `std::abort`, as handled in certain compiler versions may not immediately cause a crash. We have observed stacktrace being wiped instead, and thread put in indeterminate state, then stacktrace created without any useful information.

* chore: Add PR number to payload (#5310)

This PR adds one more payload field to the libXRPL compatibility check workflow - the PR number itself.

* chore: Update link to ripple-binary-codec (#5355)

The link to ripple-binary-codec's definitions.json appears to be outdated. The updated link is also documented here: https://xrpl.org/docs/references/protocol/binary-format#definitions-file

* Prevent consensus from getting stuck in the establish phase (#5277)

- Detects if the consensus process is "stalled". If it is, then we can declare a 
  consensus and end successfully even if we do not have 80% agreement on
  our proposal.
  - "Stalled" is defined as:
    - We have a close time consensus
    - Each disputed transaction is individually stalled:
      - It has been in the final "stuck" 95% requirement for at least 2
        (avMIN_ROUNDS) "inner rounds" of phaseEstablish,
      - and either all of the other trusted proposers or this validator, if proposing,
        have had the same vote(s) for at least 4 (avSTALLED_ROUNDS) "inner
        rounds", and at least 80% of the validators (including this one, if
        appropriate) agree about the vote (whether yes or no).
- If we have been in the establish phase for more than 10x the previous
  consensus establish phase's time, then consensus is considered "expired",
  and we will leave the round, which sends a partial validation (indicating
  that the node is moving on without validating). Two restrictions avoid
  prematurely exiting, or having an extended exit in extreme situations.
  - The 10x time is clamped to be within a range of 15s
    (ledgerMAX_CONSENSUS) to 120s (ledgerABANDON_CONSENSUS).
  - If consensus has not had an opportunity to walk through all avalanche
    states (defined as not going through 8 "inner rounds" of phaseEstablish),
    then ConsensusState::Expired is treated as ConsensusState::No.
- When enough nodes leave the round, any remaining nodes will see they've
  fallen behind, and move on, too, generally before hitting the timeout. Any
  validations or partial validations sent during this time will help the
  consensus process bring the nodes back together.

---------

Co-authored-by: Michael Legleux <mlegleux@ripple.com>
Co-authored-by: Bart <bthomee@users.noreply.github.com>
Co-authored-by: Ed Hennis <ed@ripple.com>
Co-authored-by: Bronek Kozicki <brok@incorrekt.com>
Co-authored-by: Darius Tumas <Tokeiito@users.noreply.github.com>
Co-authored-by: Sergey Kuznetsov <skuznetsov@ripple.com>
Co-authored-by: cyan317 <120398799+cindyyan317@users.noreply.github.com>
Co-authored-by: Vlad <129996061+vvysokikh1@users.noreply.github.com>
Co-authored-by: Alex Kremer <akremer@ripple.com>
2025-03-20 16:47:14 -04:00

294 lines
8.3 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_STVALIDATION_H_INCLUDED
#define RIPPLE_PROTOCOL_STVALIDATION_H_INCLUDED
#include <xrpl/basics/Log.h>
#include <xrpl/beast/utility/instrumentation.h>
#include <xrpl/protocol/FeeUnits.h>
#include <xrpl/protocol/PublicKey.h>
#include <xrpl/protocol/STObject.h>
#include <xrpl/protocol/SecretKey.h>
#include <cstdint>
#include <functional>
#include <memory>
#include <optional>
#include <sstream>
namespace ripple {
// Validation flags
// This is a full (as opposed to a partial) validation
constexpr std::uint32_t vfFullValidation = 0x00000001;
// The signature is fully canonical
constexpr std::uint32_t vfFullyCanonicalSig = 0x80000000;
class STValidation final : public STObject, public CountedObject<STValidation>
{
bool mTrusted = false;
// Determines the validity of the signature in this validation; unseated
// optional if we haven't yet checked it, a boolean otherwise.
mutable std::optional<bool> valid_;
// The public key associated with the key used to sign this validation
PublicKey const signingPubKey_;
// The ID of the validator that issued this validation. For validators
// that use manifests this will be derived from the master public key.
NodeID const nodeID_;
NetClock::time_point seenTime_ = {};
public:
/** Construct a STValidation from a peer from serialized data.
@param sit Iterator over serialized data
@param lookupNodeID Invocable with signature
NodeID(PublicKey const&)
used to find the Node ID based on the public key
that signed the validation. For manifest based
validators, this should be the NodeID of the master
public key.
@param checkSignature Whether to verify the data was signed properly
@note Throws if the object is not valid
*/
template <class LookupNodeID>
STValidation(
SerialIter& sit,
LookupNodeID&& lookupNodeID,
bool checkSignature);
/** Construct, sign and trust a new STValidation issued by this node.
@param signTime When the validation is signed
@param publicKey The current signing public key
@param secretKey The current signing secret key
@param nodeID ID corresponding to node's public master key
@param f callback function to "fill" the validation with necessary data
*/
template <typename F>
STValidation(
NetClock::time_point signTime,
PublicKey const& pk,
SecretKey const& sk,
NodeID const& nodeID,
F&& f);
// Hash of the validated ledger
uint256
getLedgerHash() const;
// Hash of consensus transaction set used to generate ledger
uint256
getConsensusHash() const;
NetClock::time_point
getSignTime() const;
NetClock::time_point
getSeenTime() const noexcept;
PublicKey const&
getSignerPublic() const noexcept;
NodeID const&
getNodeID() const noexcept;
bool
isValid() const noexcept;
bool
isFull() const noexcept;
bool
isTrusted() const noexcept;
uint256
getSigningHash() const;
void
setTrusted();
void
setUntrusted();
void
setSeen(NetClock::time_point s);
Blob
getSerialized() const;
Blob
getSignature() const;
std::string
render() const
{
std::stringstream ss;
ss << "validation: " << " ledger_hash: " << getLedgerHash()
<< " consensus_hash: " << getConsensusHash()
<< " sign_time: " << to_string(getSignTime())
<< " seen_time: " << to_string(getSeenTime())
<< " signer_public_key: " << getSignerPublic()
<< " node_id: " << getNodeID() << " is_valid: " << isValid()
<< " is_full: " << isFull() << " is_trusted: " << isTrusted()
<< " signing_hash: " << getSigningHash()
<< " base58: " << toBase58(TokenType::NodePublic, getSignerPublic());
return ss.str();
}
private:
static SOTemplate const&
validationFormat();
STBase*
copy(std::size_t n, void* buf) const override;
STBase*
move(std::size_t n, void* buf) override;
friend class detail::STVar;
};
template <class LookupNodeID>
STValidation::STValidation(
SerialIter& sit,
LookupNodeID&& lookupNodeID,
bool checkSignature)
: STObject(validationFormat(), sit, sfValidation)
, signingPubKey_([this]() {
auto const spk = getFieldVL(sfSigningPubKey);
if (publicKeyType(makeSlice(spk)) != KeyType::secp256k1)
Throw<std::runtime_error>("Invalid public key in validation");
return PublicKey{makeSlice(spk)};
}())
, nodeID_(lookupNodeID(signingPubKey_))
{
if (checkSignature && !isValid())
{
JLOG(debugLog().error()) << "Invalid signature in validation: "
<< getJson(JsonOptions::none);
Throw<std::runtime_error>("Invalid signature in validation");
}
XRPL_ASSERT(
nodeID_.isNonZero(),
"ripple::STValidation::STValidation(SerialIter) : nonzero node");
}
/** Construct, sign and trust a new STValidation issued by this node.
@param signTime When the validation is signed
@param publicKey The current signing public key
@param secretKey The current signing secret key
@param nodeID ID corresponding to node's public master key
@param f callback function to "fill" the validation with necessary data
*/
template <typename F>
STValidation::STValidation(
NetClock::time_point signTime,
PublicKey const& pk,
SecretKey const& sk,
NodeID const& nodeID,
F&& f)
: STObject(validationFormat(), sfValidation)
, signingPubKey_(pk)
, nodeID_(nodeID)
, seenTime_(signTime)
{
XRPL_ASSERT(
nodeID_.isNonZero(),
"ripple::STValidation::STValidation(PublicKey, SecretKey) : nonzero "
"node");
// First, set our own public key:
if (publicKeyType(pk) != KeyType::secp256k1)
LogicError("We can only use secp256k1 keys for signing validations");
setFieldVL(sfSigningPubKey, pk.slice());
setFieldU32(sfSigningTime, signTime.time_since_epoch().count());
// Perform additional initialization
f(*this);
// Finally, sign the validation and mark it as trusted:
setFlag(vfFullyCanonicalSig);
setFieldVL(sfSignature, signDigest(pk, sk, getSigningHash()));
setTrusted();
// Check to ensure that all required fields are present.
for (auto const& e : validationFormat())
{
if (e.style() == soeREQUIRED && !isFieldPresent(e.sField()))
LogicError(
"Required field '" + e.sField().getName() +
"' missing from validation.");
}
// We just signed this, so it should be valid.
valid_ = true;
}
inline PublicKey const&
STValidation::getSignerPublic() const noexcept
{
return signingPubKey_;
}
inline NodeID const&
STValidation::getNodeID() const noexcept
{
return nodeID_;
}
inline bool
STValidation::isTrusted() const noexcept
{
return mTrusted;
}
inline void
STValidation::setTrusted()
{
mTrusted = true;
}
inline void
STValidation::setUntrusted()
{
mTrusted = false;
}
inline void
STValidation::setSeen(NetClock::time_point s)
{
seenTime_ = s;
}
} // namespace ripple
#endif