Files
rippled/include/xrpl/basics/SharedWeakCachePointer.h
Valentin Balaschenko fc204773d6 Intrusive SHAMap smart pointers for efficient memory use and lock-free synchronization (#5152)
The main goal of this optimisation is memory reduction in SHAMapTreeNodes by introducing intrusive pointers instead of standard std::shared_ptr and std::weak_ptr.
2025-03-25 18:40:25 +00:00

136 lines
4.0 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2023 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_BASICS_SHAREDWEAKCACHEPOINTER_H_INCLUDED
#define RIPPLE_BASICS_SHAREDWEAKCACHEPOINTER_H_INCLUDED
#include <memory>
#include <variant>
namespace ripple {
/** A combination of a std::shared_ptr and a std::weak_pointer.
This class is a wrapper to a `std::variant<std::shared_ptr,std::weak_ptr>`
This class is useful for storing intrusive pointers in tagged caches using less
memory than storing both pointers directly.
*/
template <class T>
class SharedWeakCachePointer
{
public:
SharedWeakCachePointer() = default;
SharedWeakCachePointer(SharedWeakCachePointer const& rhs);
template <class TT>
requires std::convertible_to<TT*, T*>
SharedWeakCachePointer(std::shared_ptr<TT> const& rhs);
SharedWeakCachePointer(SharedWeakCachePointer&& rhs);
template <class TT>
requires std::convertible_to<TT*, T*>
SharedWeakCachePointer(std::shared_ptr<TT>&& rhs);
SharedWeakCachePointer&
operator=(SharedWeakCachePointer const& rhs);
template <class TT>
requires std::convertible_to<TT*, T*>
SharedWeakCachePointer&
operator=(std::shared_ptr<TT> const& rhs);
template <class TT>
requires std::convertible_to<TT*, T*>
SharedWeakCachePointer&
operator=(std::shared_ptr<TT>&& rhs);
~SharedWeakCachePointer();
/** Return a strong pointer if this is already a strong pointer (i.e. don't
lock the weak pointer. Use the `lock` method if that's what's needed)
*/
std::shared_ptr<T> const&
getStrong() const;
/** Return true if this is a strong pointer and the strong pointer is
seated.
*/
explicit
operator bool() const noexcept;
/** Set the pointer to null, decrement the appropriate ref count, and run
the appropriate release action.
*/
void
reset();
/** If this is a strong pointer, return the raw pointer. Otherwise return
null.
*/
T*
get() const;
/** If this is a strong pointer, return the strong count. Otherwise return 0
*/
std::size_t
use_count() const;
/** Return true if there is a non-zero strong count. */
bool
expired() const;
/** If this is a strong pointer, return the strong pointer. Otherwise
attempt to lock the weak pointer.
*/
std::shared_ptr<T>
lock() const;
/** Return true is this represents a strong pointer. */
bool
isStrong() const;
/** Return true is this represents a weak pointer. */
bool
isWeak() const;
/** If this is a weak pointer, attempt to convert it to a strong pointer.
@return true if successfully converted to a strong pointer (or was
already a strong pointer). Otherwise false.
*/
bool
convertToStrong();
/** If this is a strong pointer, attempt to convert it to a weak pointer.
@return false if the pointer is null. Otherwise return true.
*/
bool
convertToWeak();
private:
std::variant<std::shared_ptr<T>, std::weak_ptr<T>> combo_;
};
} // namespace ripple
#endif