Files
rippled/include/xrpl/protocol/detail/b58_utils.h
2025-10-23 11:04:30 -04:00

186 lines
5.4 KiB
C++

#ifndef XRPL_PROTOCOL_B58_UTILS_H_INCLUDED
#define XRPL_PROTOCOL_B58_UTILS_H_INCLUDED
#include <xrpl/basics/contract.h>
#include <xrpl/beast/utility/instrumentation.h>
#include <xrpl/protocol/detail/token_errors.h>
#include <boost/outcome.hpp>
#include <boost/outcome/result.hpp>
#include <span>
#include <system_error>
#include <tuple>
namespace ripple {
template <class T>
using Result = boost::outcome_v2::result<T, std::error_code>;
#ifndef _MSC_VER
namespace b58_fast {
namespace detail {
// This optimizes to what hand written asm would do (single divide)
[[nodiscard]] inline std::tuple<std::uint64_t, std::uint64_t>
div_rem(std::uint64_t a, std::uint64_t b)
{
return {a / b, a % b};
}
// This optimizes to what hand written asm would do (single multiply)
[[nodiscard]] inline std::tuple<std::uint64_t, std::uint64_t>
carrying_mul(std::uint64_t a, std::uint64_t b, std::uint64_t carry)
{
unsigned __int128 const x = a;
unsigned __int128 const y = b;
unsigned __int128 const c = x * y + carry;
return {c & 0xffff'ffff'ffff'ffff, c >> 64};
}
[[nodiscard]] inline std::tuple<std::uint64_t, std::uint64_t>
carrying_add(std::uint64_t a, std::uint64_t b)
{
unsigned __int128 const x = a;
unsigned __int128 const y = b;
unsigned __int128 const c = x + y;
return {c & 0xffff'ffff'ffff'ffff, c >> 64};
}
// Add a u64 to a "big uint" value inplace.
// The bigint value is stored with the smallest coefficients first
// (i.e a[0] is the 2^0 coefficient, a[n] is the 2^(64*n) coefficient)
// panics if overflows (this is a specialized adder for b58 decoding.
// it should never overflow).
[[nodiscard]] inline TokenCodecErrc
inplace_bigint_add(std::span<std::uint64_t> a, std::uint64_t b)
{
if (a.size() <= 1)
{
return TokenCodecErrc::inputTooSmall;
}
std::uint64_t carry;
std::tie(a[0], carry) = carrying_add(a[0], b);
for (auto& v : a.subspan(1))
{
if (!carry)
{
return TokenCodecErrc::success;
}
std::tie(v, carry) = carrying_add(v, 1);
}
if (carry)
{
return TokenCodecErrc::overflowAdd;
}
return TokenCodecErrc::success;
}
[[nodiscard]] inline TokenCodecErrc
inplace_bigint_mul(std::span<std::uint64_t> a, std::uint64_t b)
{
if (a.empty())
{
return TokenCodecErrc::inputTooSmall;
}
auto const last_index = a.size() - 1;
if (a[last_index] != 0)
{
return TokenCodecErrc::inputTooLarge;
}
std::uint64_t carry = 0;
for (auto& coeff : a.subspan(0, last_index))
{
std::tie(coeff, carry) = carrying_mul(coeff, b, carry);
}
a[last_index] = carry;
return TokenCodecErrc::success;
}
// divide a "big uint" value inplace and return the mod
// numerator is stored so smallest coefficients come first
[[nodiscard]] inline std::uint64_t
inplace_bigint_div_rem(std::span<uint64_t> numerator, std::uint64_t divisor)
{
if (numerator.size() == 0)
{
// should never happen, but if it does then it seems natural to define
// the a null set of numbers to be zero, so the remainder is also zero.
// LCOV_EXCL_START
UNREACHABLE(
"ripple::b58_fast::detail::inplace_bigint_div_rem : empty "
"numerator");
return 0;
// LCOV_EXCL_STOP
}
auto to_u128 = [](std::uint64_t high,
std::uint64_t low) -> unsigned __int128 {
unsigned __int128 const high128 = high;
unsigned __int128 const low128 = low;
return ((high128 << 64) | low128);
};
auto div_rem_64 =
[](unsigned __int128 num,
std::uint64_t denom) -> std::tuple<std::uint64_t, std::uint64_t> {
unsigned __int128 const denom128 = denom;
unsigned __int128 const d = num / denom128;
unsigned __int128 const r = num - (denom128 * d);
XRPL_ASSERT(
d >> 64 == 0,
"ripple::b58_fast::detail::inplace_bigint_div_rem::div_rem_64 : "
"valid division result");
XRPL_ASSERT(
r >> 64 == 0,
"ripple::b58_fast::detail::inplace_bigint_div_rem::div_rem_64 : "
"valid remainder");
return {static_cast<std::uint64_t>(d), static_cast<std::uint64_t>(r)};
};
std::uint64_t prev_rem = 0;
int const last_index = numerator.size() - 1;
std::tie(numerator[last_index], prev_rem) =
div_rem(numerator[last_index], divisor);
for (int i = last_index - 1; i >= 0; --i)
{
unsigned __int128 const cur_num = to_u128(prev_rem, numerator[i]);
std::tie(numerator[i], prev_rem) = div_rem_64(cur_num, divisor);
}
return prev_rem;
}
// convert from base 58^10 to base 58
// put largest coeffs first
// the `_be` suffix stands for "big endian"
[[nodiscard]] inline std::array<std::uint8_t, 10>
b58_10_to_b58_be(std::uint64_t input)
{
[[maybe_unused]] static constexpr std::uint64_t B_58_10 =
430804206899405824; // 58^10;
XRPL_ASSERT(
input < B_58_10,
"ripple::b58_fast::detail::b58_10_to_b58_be : valid input");
constexpr std::size_t resultSize = 10;
std::array<std::uint8_t, resultSize> result{};
int i = 0;
while (input > 0)
{
std::uint64_t rem;
std::tie(input, rem) = div_rem(input, 58);
result[resultSize - 1 - i] = rem;
i += 1;
}
return result;
}
} // namespace detail
} // namespace b58_fast
#endif
} // namespace ripple
#endif // XRPL_PROTOCOL_B58_UTILS_H_INCLUDED