Files
rippled/include/xrpl/protocol/Units.h
Ed Hennis 89f0b3b9e4 [WIP] Continue implementing LoanSet Transactor
- Needs tests
- Started trying to add strong typing to the fields used as bips or 1/10
  bips.
2025-05-07 12:11:54 -04:00

609 lines
17 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2019 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef PROTOCOL_UNITS_H_INCLUDED
#define PROTOCOL_UNITS_H_INCLUDED
#include <xrpl/basics/safe_cast.h>
#include <xrpl/beast/utility/Zero.h>
#include <xrpl/beast/utility/instrumentation.h>
#include <xrpl/json/json_value.h>
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/operators.hpp>
#include <cmath>
#include <ios>
#include <iosfwd>
#include <limits>
#include <optional>
#include <sstream>
#include <string>
#include <utility>
namespace ripple {
namespace unit {
/** "drops" are the smallest divisible amount of XRP. This is what most
of the code uses. */
struct dropTag;
/** "fee levels" are used by the transaction queue to compare the relative
cost of transactions that require different levels of effort to process.
See also: src/ripple/app/misc/FeeEscalation.md#fee-level */
struct feelevelTag;
/** unitless values are plain scalars wrapped in a ValueUnit. They are
used for calculations in this header. */
struct unitlessTag;
/** Units to represent basis points (bips) and 1/10 basis points */
class BipsTag;
class TenthBipsTag;
template <class T>
using enable_if_unit_t = typename std::enable_if_t<
std::is_class_v<T> && std::is_object_v<typename T::unit_type> &&
std::is_object_v<typename T::value_type>>;
/** `is_usable_unit_v` is checked to ensure that only values with
known valid type tags can be used (sometimes transparently) in
non-unit contexts. At the time of implementation, this includes
all known tags, but more may be added in the future, and they
should not be added automatically unless determined to be
appropriate.
*/
template <class T, class = enable_if_unit_t<T>>
constexpr bool is_usable_unit_v =
std::is_same_v<typename T::unit_type, feelevelTag> ||
std::is_same_v<typename T::unit_type, unitlessTag> ||
std::is_same_v<typename T::unit_type, dropTag> ||
std::is_same_v<typename T::unit_type, BipsTag> ||
std::is_same_v<typename T::unit_type, TenthBipsTag>;
template <class UnitTag, class T>
class ValueUnit : private boost::totally_ordered<ValueUnit<UnitTag, T>>,
private boost::additive<ValueUnit<UnitTag, T>>,
private boost::equality_comparable<ValueUnit<UnitTag, T>, T>,
private boost::dividable<ValueUnit<UnitTag, T>, T>,
private boost::modable<ValueUnit<UnitTag, T>, T>,
private boost::unit_steppable<ValueUnit<UnitTag, T>>
{
public:
using unit_type = UnitTag;
using value_type = T;
private:
value_type value_;
protected:
template <class Other>
static constexpr bool is_compatible_v =
std::is_arithmetic_v<Other> && std::is_arithmetic_v<value_type> &&
std::is_convertible_v<Other, value_type>;
template <class OtherValue, class = enable_if_unit_t<OtherValue>>
static constexpr bool is_compatiblevalue_v =
is_compatible_v<typename OtherValue::value_type> &&
std::is_same_v<UnitTag, typename OtherValue::unit_type>;
template <class Other>
using enable_if_compatible_t =
typename std::enable_if_t<is_compatible_v<Other>>;
template <class OtherValue>
using enable_if_compatiblevalue_t =
typename std::enable_if_t<is_compatiblevalue_v<OtherValue>>;
public:
ValueUnit() = default;
constexpr ValueUnit(ValueUnit const& other) = default;
constexpr ValueUnit&
operator=(ValueUnit const& other) = default;
constexpr explicit ValueUnit(beast::Zero) : value_(0)
{
}
constexpr ValueUnit&
operator=(beast::Zero)
{
value_ = 0;
return *this;
}
constexpr explicit ValueUnit(value_type value) : value_(value)
{
}
constexpr ValueUnit&
operator=(value_type value)
{
value_ = value;
return *this;
}
/** Instances with the same unit, and a type that is
"safe" to convert to this one can be converted
implicitly */
template <
class Other,
class = std::enable_if_t<
is_compatible_v<Other> &&
is_safetocasttovalue_v<value_type, Other>>>
constexpr ValueUnit(ValueUnit<unit_type, Other> const& value)
: ValueUnit(safe_cast<value_type>(value.value()))
{
}
constexpr ValueUnit
operator+(value_type const& rhs) const
{
return ValueUnit{value_ + rhs};
}
friend constexpr ValueUnit
operator+(value_type lhs, ValueUnit const& rhs)
{
// addition is commutative
return rhs + lhs;
}
constexpr ValueUnit
operator-(value_type const& rhs) const
{
return ValueUnit{value_ - rhs};
}
friend constexpr ValueUnit
operator-(value_type lhs, ValueUnit const& rhs)
{
// subtraction is NOT commutative, but (lhs + (-rhs)) is addition, which
// is
return -rhs + lhs;
}
constexpr ValueUnit
operator*(value_type const& rhs) const
{
return ValueUnit{value_ * rhs};
}
friend constexpr ValueUnit
operator*(value_type lhs, ValueUnit const& rhs)
{
// multiplication is commutative
return rhs * lhs;
}
constexpr value_type
operator/(ValueUnit const& rhs) const
{
return value_ / rhs.value_;
}
ValueUnit&
operator+=(ValueUnit const& other)
{
value_ += other.value();
return *this;
}
ValueUnit&
operator-=(ValueUnit const& other)
{
value_ -= other.value();
return *this;
}
ValueUnit&
operator++()
{
++value_;
return *this;
}
ValueUnit&
operator--()
{
--value_;
return *this;
}
ValueUnit&
operator*=(value_type const& rhs)
{
value_ *= rhs;
return *this;
}
ValueUnit&
operator/=(value_type const& rhs)
{
value_ /= rhs;
return *this;
}
template <class transparent = value_type>
std::enable_if_t<std::is_integral_v<transparent>, ValueUnit&>
operator%=(value_type const& rhs)
{
value_ %= rhs;
return *this;
}
ValueUnit
operator-() const
{
static_assert(
std::is_signed_v<T>, "- operator illegal on unsigned value types");
return ValueUnit{-value_};
}
constexpr bool
operator==(ValueUnit const& other) const
{
return value_ == other.value_;
}
template <class Other, class = enable_if_compatible_t<Other>>
constexpr bool
operator==(ValueUnit<unit_type, Other> const& other) const
{
return value_ == other.value();
}
constexpr bool
operator==(value_type other) const
{
return value_ == other;
}
template <class Other, class = enable_if_compatible_t<Other>>
constexpr bool
operator!=(ValueUnit<unit_type, Other> const& other) const
{
return !operator==(other);
}
constexpr bool
operator<(ValueUnit const& other) const
{
return value_ < other.value_;
}
/** Returns true if the amount is not zero */
explicit constexpr
operator bool() const noexcept
{
return value_ != 0;
}
/** Return the sign of the amount */
constexpr int
signum() const noexcept
{
return (value_ < 0) ? -1 : (value_ ? 1 : 0);
}
/** Returns the number of drops */
constexpr value_type
fee() const
{
return value_;
}
template <class Other>
constexpr double
decimalFromReference(ValueUnit<unit_type, Other> reference) const
{
return static_cast<double>(value_) / reference.value();
}
// `is_usable_unit_v` is checked to ensure that only values with
// known valid type tags can be converted to JSON. At the time
// of implementation, that includes all known tags, but more may
// be added in the future.
std::enable_if_t<is_usable_unit_v<ValueUnit>, Json::Value>
jsonClipped() const
{
if constexpr (std::is_integral_v<value_type>)
{
using jsontype = std::conditional_t<
std::is_signed_v<value_type>,
Json::Int,
Json::UInt>;
constexpr auto min = std::numeric_limits<jsontype>::min();
constexpr auto max = std::numeric_limits<jsontype>::max();
if (value_ < min)
return min;
if (value_ > max)
return max;
return static_cast<jsontype>(value_);
}
else
{
return value_;
}
}
/** Returns the underlying value. Code SHOULD NOT call this
function unless the type has been abstracted away,
e.g. in a templated function.
*/
constexpr value_type
value() const
{
return value_;
}
friend std::istream&
operator>>(std::istream& s, ValueUnit& val)
{
s >> val.value_;
return s;
}
};
// Output Values as just their numeric value.
template <class Char, class Traits, class UnitTag, class T>
std::basic_ostream<Char, Traits>&
operator<<(std::basic_ostream<Char, Traits>& os, const ValueUnit<UnitTag, T>& q)
{
return os << q.value();
}
template <class UnitTag, class T>
std::string
to_string(ValueUnit<UnitTag, T> const& amount)
{
return std::to_string(amount.value());
}
template <class Source, class = enable_if_unit_t<Source>>
constexpr bool can_muldiv_source_v =
std::is_convertible_v<typename Source::value_type, std::uint64_t>;
template <class Dest, class = enable_if_unit_t<Dest>>
constexpr bool can_muldiv_dest_v =
can_muldiv_source_v<Dest> && // Dest is also a source
std::is_convertible_v<std::uint64_t, typename Dest::value_type> &&
sizeof(typename Dest::value_type) >= sizeof(std::uint64_t);
template <
class Source1,
class Source2,
class = enable_if_unit_t<Source1>,
class = enable_if_unit_t<Source2>>
constexpr bool can_muldiv_sources_v =
can_muldiv_source_v<Source1> && can_muldiv_source_v<Source2> &&
std::is_same_v<typename Source1::unit_type, typename Source2::unit_type>;
template <
class Source1,
class Source2,
class Dest,
class = enable_if_unit_t<Source1>,
class = enable_if_unit_t<Source2>,
class = enable_if_unit_t<Dest>>
constexpr bool can_muldiv_v =
can_muldiv_sources_v<Source1, Source2> && can_muldiv_dest_v<Dest>;
// Source and Dest can be the same by default
template <
class Source1,
class Source2,
class Dest,
class = enable_if_unit_t<Source1>,
class = enable_if_unit_t<Source2>,
class = enable_if_unit_t<Dest>>
constexpr bool can_muldiv_commute_v = can_muldiv_v<Source1, Source2, Dest> &&
!std::is_same_v<typename Source1::unit_type, typename Dest::unit_type>;
template <class T>
using enable_muldiv_source_t =
typename std::enable_if_t<can_muldiv_source_v<T>>;
template <class T>
using enable_muldiv_dest_t = typename std::enable_if_t<can_muldiv_dest_v<T>>;
template <class Source1, class Source2>
using enable_muldiv_sources_t =
typename std::enable_if_t<can_muldiv_sources_v<Source1, Source2>>;
template <class Source1, class Source2, class Dest>
using enable_muldiv_t =
typename std::enable_if_t<can_muldiv_v<Source1, Source2, Dest>>;
template <class Source1, class Source2, class Dest>
using enable_muldiv_commute_t =
typename std::enable_if_t<can_muldiv_commute_v<Source1, Source2, Dest>>;
template <class T>
ValueUnit<unitlessTag, T>
scalar(T value)
{
return ValueUnit<unitlessTag, T>{value};
}
template <
class Source1,
class Source2,
class Dest,
class = enable_muldiv_t<Source1, Source2, Dest>>
std::optional<Dest>
mulDivU(Source1 value, Dest mul, Source2 div)
{
// values can never be negative in any context.
if (value.value() < 0 || mul.value() < 0 || div.value() < 0)
{
// split the asserts so if one hits, the user can tell which
// without a debugger.
XRPL_ASSERT(
value.value() >= 0, "ripple::unit::mulDivU : minimum value input");
XRPL_ASSERT(
mul.value() >= 0, "ripple::unit::mulDivU : minimum mul input");
XRPL_ASSERT(
div.value() >= 0, "ripple::unit::mulDivU : minimum div input");
return std::nullopt;
}
using desttype = typename Dest::value_type;
constexpr auto max = std::numeric_limits<desttype>::max();
// Shortcuts, since these happen a lot in the real world
if (value == div)
return mul;
if (mul.value() == div.value())
{
if (value.value() > max)
return std::nullopt;
return Dest{static_cast<desttype>(value.value())};
}
using namespace boost::multiprecision;
uint128_t product;
product = multiply(
product,
static_cast<std::uint64_t>(value.value()),
static_cast<std::uint64_t>(mul.value()));
auto quotient = product / div.value();
if (quotient > max)
return std::nullopt;
return Dest{static_cast<desttype>(quotient)};
}
} // namespace unit
// Fee Levels
template <class T>
using FeeLevel = unit::ValueUnit<unit::feelevelTag, T>;
using FeeLevel64 = FeeLevel<std::uint64_t>;
using FeeLevelDouble = FeeLevel<double>;
// Basis points (Bips)
template <class T>
using Bips = unit::ValueUnit<unit::BipsTag, T>;
using Bips16 = Bips<std::uint16_t>;
using Bips32 = Bips<std::uint32_t>;
template <class T>
using TenthBips = unit::ValueUnit<unit::TenthBipsTag, T>;
using TenthBips16 = TenthBips<std::uint16_t>;
using TenthBips32 = TenthBips<std::uint32_t>;
template <
class Source1,
class Source2,
class Dest,
class = unit::enable_muldiv_t<Source1, Source2, Dest>>
std::optional<Dest>
mulDiv(Source1 value, Dest mul, Source2 div)
{
return unit::mulDivU(value, mul, div);
}
template <
class Source1,
class Source2,
class Dest,
class = unit::enable_muldiv_commute_t<Source1, Source2, Dest>>
std::optional<Dest>
mulDiv(Dest value, Source1 mul, Source2 div)
{
// Multiplication is commutative
return unit::mulDivU(mul, value, div);
}
template <class Dest, class = unit::enable_muldiv_dest_t<Dest>>
std::optional<Dest>
mulDiv(std::uint64_t value, Dest mul, std::uint64_t div)
{
// Give the scalars a non-tag so the
// unit-handling version gets called.
return unit::mulDivU(unit::scalar(value), mul, unit::scalar(div));
}
template <class Dest, class = unit::enable_muldiv_dest_t<Dest>>
std::optional<Dest>
mulDiv(Dest value, std::uint64_t mul, std::uint64_t div)
{
// Multiplication is commutative
return mulDiv(mul, value, div);
}
template <
class Source1,
class Source2,
class = unit::enable_muldiv_sources_t<Source1, Source2>>
std::optional<std::uint64_t>
mulDiv(Source1 value, std::uint64_t mul, Source2 div)
{
// Give the scalars a dimensionless unit so the
// unit-handling version gets called.
auto unitresult = unit::mulDivU(value, unit::scalar(mul), div);
if (!unitresult)
return std::nullopt;
return unitresult->value();
}
template <
class Source1,
class Source2,
class = unit::enable_muldiv_sources_t<Source1, Source2>>
std::optional<std::uint64_t>
mulDiv(std::uint64_t value, Source1 mul, Source2 div)
{
// Multiplication is commutative
return mulDiv(mul, value, div);
}
template <class Dest, class Src>
constexpr std::enable_if_t<
std::is_same_v<typename Dest::unit_type, typename Src::unit_type> &&
std::is_integral_v<typename Dest::value_type> &&
std::is_integral_v<typename Src::value_type>,
Dest>
safe_cast(Src s) noexcept
{
// Dest may not have an explicit value constructor
return Dest{safe_cast<typename Dest::value_type>(s.value())};
}
template <class Dest, class Src>
constexpr std::enable_if_t<
std::is_same_v<typename Dest::unit_type, typename Src::unit_type> &&
std::is_integral_v<typename Dest::value_type> &&
std::is_integral_v<typename Src::value_type>,
Dest>
unsafe_cast(Src s) noexcept
{
// Dest may not have an explicit value constructor
return Dest{unsafe_cast<typename Dest::value_type>(s.value())};
}
} // namespace ripple
#endif // PROTOCOL_UNITS_H_INCLUDED