Files
rippled/src/cpp/ripple/ProofOfWork.cpp
2012-11-12 22:51:48 -08:00

124 lines
2.9 KiB
C++

#include "ProofOfWork.h"
#include <string>
#include <boost/test/unit_test.hpp>
#include <openssl/rand.h>
#include "Serializer.h"
#include "Log.h"
SETUP_LOG();
const uint256 ProofOfWork::sMinTarget("00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
const int ProofOfWork::sMaxIterations(1 << 23);
bool ProofOfWork::isValid() const
{
return ((mIterations <= sMaxIterations) && (mTarget >= sMinTarget));
}
uint64 ProofOfWork::getDifficulty(const uint256& target, int iterations)
{ // calculate the approximate number of hashes required to solve this proof of work
if ((iterations > sMaxIterations) || (target < sMinTarget))
{
cLog(lsINFO) << "Iterations:" << iterations;
cLog(lsINFO) << "MaxIterat: " << sMaxIterations;
cLog(lsINFO) << "Target: " << target;
cLog(lsINFO) << "MinTarget: " << sMinTarget;
throw std::runtime_error("invalid proof of work target/iteration");
}
// more iterations means more hashes per iteration but also a larger final hash
uint64 difficulty = iterations + (iterations / 4);
// Multiply the number of hashes needed by 256 for each leading zero byte in the difficulty
const unsigned char *ptr = target.begin();
while (*ptr == 0)
{
difficulty *= 256;
++ptr;
}
difficulty = (difficulty * 256) / (*ptr + 1);
return difficulty;
}
static uint256 getSHA512Half(const std::vector<uint256>& vec)
{
return Serializer::getSHA512Half(vec.front().begin(), vec.size() * (256 / 8));
}
uint256 ProofOfWork::solve(int maxIterations) const
{
if (!isValid())
throw std::runtime_error("invalid proof of work target/iteration");
uint256 nonce;
RAND_bytes(nonce.begin(), nonce.size());
std::vector<uint256> buf2;
buf2.resize(mIterations);
std::vector<uint256> buf1;
buf1.resize(3);
buf1[0] = mChallenge;
while (maxIterations > 0)
{
buf1[1] = nonce;
buf1[2] = uint256();
for (int i = (mIterations - 1); i >= 0; --i)
{
buf1[2] = getSHA512Half(buf1);
buf2[i] = buf1[2];
}
if (getSHA512Half(buf2) <= mTarget)
return nonce;
++nonce;
--maxIterations;
}
return uint256();
}
bool ProofOfWork::checkSolution(const uint256& solution) const
{
if (mIterations > sMaxIterations)
return false;
std::vector<uint256> buf1;
buf1.push_back(mChallenge);
buf1.push_back(solution);
buf1.push_back(uint256());
std::vector<uint256> buf2;
buf2.resize(mIterations);
for (int i = (mIterations - 1); i >= 0; --i)
{
buf1[2] = getSHA512Half(buf1);
buf2[i] = buf1[2];
}
return getSHA512Half(buf2) <= mTarget;
}
BOOST_AUTO_TEST_SUITE(ProofOfWork_suite)
BOOST_AUTO_TEST_CASE( ProofOfWork_test )
{
ProofOfWork pow("test", 32, uint256(),
uint256("000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"));
cLog(lsINFO) << "Estimated difficulty: " << pow.getDifficulty();
uint256 solution = pow.solve(16777216);
if (solution.isZero())
BOOST_FAIL("Unable to solve proof of work");
if (!pow.checkSolution(solution))
BOOST_FAIL("Solution did not check");
}
BOOST_AUTO_TEST_SUITE_END()
// vim:ts=4