Files
rippled/modules/ripple_core/functional/ripple_JobQueue.cpp
2013-07-29 13:30:05 -07:00

322 lines
8.6 KiB
C++

//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
SETUP_LOG (JobQueue)
JobQueue::JobQueue ()
: mLastJob (0)
, mThreadCount (0)
, mShuttingDown (false)
{
mJobLoads [ jtPUBOLDLEDGER ].setTargetLatency (10000, 15000);
mJobLoads [ jtVALIDATION_ut ].setTargetLatency (2000, 5000);
mJobLoads [ jtPROOFWORK ].setTargetLatency (2000, 5000);
mJobLoads [ jtTRANSACTION ].setTargetLatency (250, 1000);
mJobLoads [ jtPROPOSAL_ut ].setTargetLatency (500, 1250);
mJobLoads [ jtPUBLEDGER ].setTargetLatency (3000, 4500);
mJobLoads [ jtWAL ].setTargetLatency (1000, 2500);
mJobLoads [ jtVALIDATION_t ].setTargetLatency (500, 1500);
mJobLoads [ jtWRITE ].setTargetLatency (750, 1500);
mJobLoads [ jtTRANSACTION_l ].setTargetLatency (100, 500);
mJobLoads [ jtPROPOSAL_t ].setTargetLatency (100, 500);
mJobLoads [ jtCLIENT ].setTargetLatency (2000, 5000);
mJobLoads [ jtPEER ].setTargetLatency (200, 2500);
mJobLoads [ jtDISK ].setTargetLatency (500, 1000);
mJobLoads [ jtACCEPTLEDGER ].setTargetLatency (1000, 2500);
}
void JobQueue::addJob (JobType type, const std::string& name, const FUNCTION_TYPE<void (Job&)>& jobFunc)
{
addLimitJob(type, name, 0, jobFunc);
}
void JobQueue::addLimitJob (JobType type, const std::string& name, int limit, const FUNCTION_TYPE<void (Job&)>& jobFunc)
{
assert (type != jtINVALID);
boost::mutex::scoped_lock sl (mJobLock);
if (type != jtCLIENT) // FIXME: Workaround incorrect client shutdown ordering
assert (mThreadCount != 0); // do not add jobs to a queue with no threads
std::pair< std::set <Job>::iterator, bool > it =
mJobSet.insert (Job (type, name, limit, ++mLastJob, mJobLoads[type], jobFunc));
it.first->peekEvent().start(); // start timing how long it stays in the queue
++mJobCounts[type].first;
mJobCond.notify_one ();
}
int JobQueue::getJobCount (JobType t)
{
boost::mutex::scoped_lock sl (mJobLock);
std::map< JobType, std::pair<int, int> >::iterator c = mJobCounts.find (t);
return (c == mJobCounts.end ()) ? 0 : c->second.first;
}
int JobQueue::getJobCountTotal (JobType t)
{
boost::mutex::scoped_lock sl (mJobLock);
std::map< JobType, std::pair<int, int> >::iterator c = mJobCounts.find (t);
return (c == mJobCounts.end ()) ? 0 : (c->second.first + c->second.second);
}
int JobQueue::getJobCountGE (JobType t)
{
// return the number of jobs at this priority level or greater
int ret = 0;
boost::mutex::scoped_lock sl (mJobLock);
typedef std::map< JobType, std::pair<int, int> >::value_type jt_int_pair;
BOOST_FOREACH (const jt_int_pair & it, mJobCounts)
if (it.first >= t)
ret += it.second.first;
return ret;
}
std::vector< std::pair<JobType, std::pair<int, int> > > JobQueue::getJobCounts ()
{
// return all jobs at all priority levels
std::vector< std::pair<JobType, std::pair<int, int> > > ret;
boost::mutex::scoped_lock sl (mJobLock);
ret.reserve (mJobCounts.size ());
typedef std::map< JobType, std::pair<int, int> >::value_type jt_int_pair;
BOOST_FOREACH (const jt_int_pair & it, mJobCounts)
ret.push_back (it);
return ret;
}
Json::Value JobQueue::getJson (int)
{
Json::Value ret (Json::objectValue);
boost::mutex::scoped_lock sl (mJobLock);
ret["threads"] = mThreadCount;
Json::Value priorities = Json::arrayValue;
for (int i = 0; i < NUM_JOB_TYPES; ++i)
{
if (static_cast<JobType>(i) == jtGENERIC)
continue;
uint64 count, latencyAvg, latencyPeak;
int jobCount, threadCount;
bool isOver;
mJobLoads[i].getCountAndLatency (count, latencyAvg, latencyPeak, isOver);
std::map< JobType, std::pair<int, int> >::iterator it = mJobCounts.find (static_cast<JobType> (i));
if (it == mJobCounts.end ())
{
jobCount = 0;
threadCount = 0;
}
else
{
jobCount = it->second.first;
threadCount = it->second.second;
}
if ((count != 0) || (jobCount != 0) || (latencyPeak != 0) || (threadCount != 0))
{
Json::Value pri (Json::objectValue);
if (isOver)
pri["over_target"] = true;
pri["job_type"] = Job::toString (static_cast<JobType> (i));
if (jobCount != 0)
pri["waiting"] = jobCount;
if (count != 0)
pri["per_second"] = static_cast<int> (count);
if (latencyPeak != 0)
pri["peak_time"] = static_cast<int> (latencyPeak);
if (latencyAvg != 0)
pri["avg_time"] = static_cast<int> (latencyAvg);
if (threadCount != 0)
pri["in_progress"] = threadCount;
priorities.append (pri);
}
}
ret["job_types"] = priorities;
return ret;
}
bool JobQueue::isOverloaded ()
{
int count = 0;
boost::mutex::scoped_lock sl (mJobLock);
for (int i = 0; i < NUM_JOB_TYPES; ++i)
if (mJobLoads[i].isOver ())
++count;
return count > 0;
}
void JobQueue::shutdown ()
{
// shut down the job queue without completing pending jobs
WriteLog (lsINFO, JobQueue) << "Job queue shutting down";
boost::mutex::scoped_lock sl (mJobLock);
mShuttingDown = true;
mJobCond.notify_all ();
while (mThreadCount != 0)
mJobCond.wait (sl);
}
// set the number of thread serving the job queue to precisely this number
void JobQueue::setThreadCount (int c, bool const standaloneMode)
{
if (standaloneMode)
{
c = 1;
}
else if (c == 0)
{
c = SystemStats::getNumCpus ();
// VFALCO NOTE According to boost, hardware_concurrency cannot return
// negative numbers/
//
if (c < 0)
c = 2; // VFALCO NOTE Why 2?
if (c > 4) // I/O will bottleneck
c = 4;
c += 2;
WriteLog (lsINFO, JobQueue) << "Auto-tuning to " << c << " validation/transaction/proposal threads";
}
// VFALCO TODO Split the function up. The lower part actually does the "do",
// The part above this comment figures out the value for numThreads
//
boost::mutex::scoped_lock sl (mJobLock);
while (mJobCounts[jtDEATH].first != 0)
{
mJobCond.wait (sl);
}
while (mThreadCount < c)
{
++mThreadCount;
boost::thread (BIND_TYPE (&JobQueue::threadEntry, this)).detach ();
}
while (mThreadCount > c)
{
if (mJobCounts[jtDEATH].first != 0)
{
mJobCond.wait (sl);
}
else
{
mJobSet.insert (Job (jtDEATH, 0));
++ (mJobCounts[jtDEATH].first);
}
}
mJobCond.notify_one (); // in case we sucked up someone else's signal
}
bool JobQueue::getJob(Job& job)
{
if (mJobSet.empty() || mShuttingDown)
return false;
std::set<Job>::iterator it = mJobSet.begin ();
while (1)
{
// Are we out of jobs?
if (it == mJobSet.end())
return false;
// Does this job have no limit?
if (it->getLimit() == 0)
break;
// Is this job category below the limit?
if (mJobCounts[it->getType()].second < it->getLimit())
break;
// Try the next job, if any
++it;
}
job = *it;
mJobSet.erase (it);
return true;
}
// do jobs until asked to stop
void JobQueue::threadEntry ()
{
boost::mutex::scoped_lock sl (mJobLock);
while (1)
{
JobType type;
setCallingThreadName ("waiting");
{
Job job;
while (!getJob(job))
{
if (mShuttingDown)
{
--mThreadCount;
mJobCond.notify_all();
return;
}
mJobCond.wait (sl);
}
type = job.getType ();
-- (mJobCounts[type].first);
if (type == jtDEATH)
{
--mThreadCount;
mJobCond.notify_all();
return;
}
++ (mJobCounts[type].second);
sl.unlock ();
setCallingThreadName (Job::toString (type));
WriteLog (lsTRACE, JobQueue) << "Doing " << Job::toString (type) << " job";
job.doJob ();
} // must destroy job without holding lock
sl.lock ();
-- (mJobCounts[type].second);
}
}
// vim:ts=4