Files
rippled/include/xrpl/protocol/STObject.h
Ed Hennis 527e0c916f Lending protocol implementation (XLS-0066)
- Add the LendingProtocol amendment
- Add Loan Broker and Loan ledger objects:
- Also add new SFields, Keylet functions, and an Invariant to verify no
  illegal field modification
- Update list of "constant" fields from spec
- Also add a general check for all object types for the type and index
  fields
- refactor: Check transaction flags in preflight0
- Adds a flagMask parameter to preflight1 so that it's impossible to
  forget to check flags.
- Also adds a short hash prefix to all Transactor log messages.
- refactor: Generalize Transactor preflight:
- Derived classes no longer need to explicitly check amendments, nor
  call into preflight1 or preflight2.
- implemeng LoanBrokerSet
- Transactions: LoanDelete, LoanManage, LoanDraw, LoanPay
- LoanBrokerSet creation mostly done. Need update.
- Also added a lookup table for pseudo account fields.
- Update changed field name.
- Modify modifiable fields in an update. Note there are only two.
- Add a node field to dirLink, defaulting sfOwnerNode, so other
  relationships can be updated.
- Create some helper classes for transaction fields
- Test that they work by converting some of the existing classes
- Finish creating helper classes for JTx fields
- Also change the pseudo account field lookup to a function that uses
  a switch
- Update tests, update pseudo-account checking
- Generalize some of the Invariant checks using macro files
  - Valid ledger entry type
  - Valid new account root and pseudo account check
- Enumerate transaction privileges for invariants
  - Allows them to be defined in transactions.macro instead of needing to
    scrutinize every existing Invariant class.
  - List is not necessarily comprehensive, but does cover every check
    where more than one transaction type is involved.
- Reserve a few values between Vault and Lending for future use
- Pseudo-account improvements
  - Define pseudo-account fields with an sfield flag
  - Pseudo-account invariant checks rules whenever a pseudo-account is
    created or modified.
- Move some helper functions.
- Check the regular key in the pseudo-transaction invariant check.
- Transactor::checkSign will always fail for a pseudo-account, so even
  if someone figures out how to get a good signature, it won't work.
- Fix account creation to check both amendments
- Add a validity range for sfDebtMaximum
- Change more "failed" messages. The goal here is to be able to search
  the log for "failed" and ONLY get test failures.
- NoModifiedUnmodifiableFields and ValidPseudoAccounts
- Move the Invariants_test class into the test namespace
- Clang wants an explicit ctor to emplace in a vector
- Refactor: Add a Transactor base function to make it easier to get the
  owner reserve increment as a fee.
- Refactor: Add an overload jtx::fee(increment) to pay an owner reserve.
- Initial implementation of LoanBrokerDelete
- Generalize the LoanBroker lifecycle test
- Refactor ApplyView::dirAdd to give access to low-level operations
  - Takes a page from #5362, which may turn out to be useful!
- Start writing Loan Broker invariants and tests
  - Specifically those mentioned for LoanBrokerDelete
- Move all detail namespaces to be under ripple
  - Avoids problems with namespace collisions / ambiguous symbol issues
    with unity builds, especially when adding or removing files.
- Add LoanBrokerCoverDeposit transaction
- Add LoanBrokerCoverWithdraw transaction
- Start writing tests for LoanBrokerCover*
- Add support for `Asset` and `MPTIssue` to some `jtx` helper classes
  and functions (`balance`, `expectLine`)
- Add support for pseudo-accounts to `jtx::Account` by allowing directly
  setting the AccountID without a matching key.
- Add Asset and MPTIssue support to more jtx objects / functions
  - Unfortunately, to work around some ambiguous symbol compilation
    errors, I had to change the implicit conversion from IOU to Asset to
    a conversion from IOU to PrettyAsset, and add a more explicit
    `asset()` function. This workaround only required changing two
    existing tests, so seems acceptable.
- Ensure that an account is not deleted with an XRP balance
  - Updates the AccountRootsDeletedClean invariant
- Finish up the Loan Broker tests
- Move inclusion of Transactor headers to transactions.macro
  - Only need to update in one place when adding a new transaction.
- Start implementing LoanSet transactor
  - Add some more values and functions to make it easier to work with
    basis point values / bips.
  - Fix several earlier mistakes.
- Generalize the check*Sign functions to support CounterParty
  - checkSign, checkSingleSign, and checkMultiSign in STTx and Transactor
- Start writing Loan tests
  - Required adding support for counterparty signature to jtx framework:
    arbitrary signature field destination, multiple signer callbacks
- Get Counterparty signing working
- Add more LoanSet unit tests, added LoanBroker LoanSequence field
  - LoanSequence will prevent loan key collisions
- Change Loan object indexing, fix several broken LoanSet unit tests
  - Loan objects will now only be indexed by LoanBrokerID and
    LoanSequence, which is a new field in LoanBroker. Also changes
    Loan.Sequence to Loan.LoanSequence to match up.
  - Several tests weren't working because of `PrettyAsset` scaling. Also,
    `PrettyAsset` calculations could overflow. Made that less likely by
    changing the type of `scale_`.
  - LoanSet will fail if an account tries to loan to itself.
- Ensure that an account is not deleted with a non-zero owner count
  - Updates the AccountRootsDeletedClean invariant
- Add unit tests to create a Loan successfully
  - Fix a few field initializations in LoanSet
- Refactor issuance validity check in VaultCreate
  - Utility function: canAddHolding
  - Call canAddHolding from any transactor that call addEmptyHolding
    (LoanBrokerSet, LoanSet)
- Start implementing LoanManage transaction
  - Also add a ValidLoan invariant
- Finish `LoanManage` functionality and tests, modulo LoanDraw/Pay
- Allow existing trust lines to loan brokers to be managed (by issuer)
- Implement LoanDelete, and fix a bunch of math errors in LoanManage
- Update to match latest spec: compute interest, LoanBroker reserves
- refactor: Define getFlagsMask in the base Transactor class
  - Returns tfUniversalMask for most transactors
  - Only transactors that use other flags need to override
- Implement LoanDraw, and made good progress on related tests
- Start implementing LoanPay transaction
- Implement LoanPay & most tests
- Also add an XRPL_ASSERT_PARTS, which splits the parts of the assert message
    so I don't have to remember the proper formatting.
Start writing LoanPay transaction tests
2025-05-21 11:39:55 +01:00

1279 lines
31 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_STOBJECT_H_INCLUDED
#define RIPPLE_PROTOCOL_STOBJECT_H_INCLUDED
#include <xrpl/basics/CountedObject.h>
#include <xrpl/basics/Slice.h>
#include <xrpl/basics/chrono.h>
#include <xrpl/basics/contract.h>
#include <xrpl/beast/utility/instrumentation.h>
#include <xrpl/protocol/HashPrefix.h>
#include <xrpl/protocol/SOTemplate.h>
#include <xrpl/protocol/STAmount.h>
#include <xrpl/protocol/STBase.h>
#include <xrpl/protocol/STCurrency.h>
#include <xrpl/protocol/STIssue.h>
#include <xrpl/protocol/STPathSet.h>
#include <xrpl/protocol/STVector256.h>
#include <xrpl/protocol/Units.h>
#include <xrpl/protocol/detail/STVar.h>
#include <boost/iterator/transform_iterator.hpp>
#include <optional>
#include <stdexcept>
#include <type_traits>
#include <utility>
namespace ripple {
class STArray;
inline void
throwFieldNotFound(SField const& field)
{
Throw<std::runtime_error>("Field not found: " + field.getName());
}
class STObject : public STBase, public CountedObject<STObject>
{
// Proxy value for a STBase derived class
template <class T>
class Proxy;
template <class T>
class ValueProxy;
template <class T>
class OptionalProxy;
struct Transform
{
explicit Transform() = default;
using argument_type = detail::STVar;
using result_type = STBase;
STBase const&
operator()(detail::STVar const& e) const;
};
using list_type = std::vector<detail::STVar>;
list_type v_;
SOTemplate const* mType;
public:
using iterator = boost::
transform_iterator<Transform, STObject::list_type::const_iterator>;
virtual ~STObject() = default;
STObject(STObject const&) = default;
template <typename F>
STObject(SOTemplate const& type, SField const& name, F&& f)
: STObject(type, name)
{
f(*this);
}
STObject&
operator=(STObject const&) = default;
STObject(STObject&&);
STObject&
operator=(STObject&& other);
STObject(SOTemplate const& type, SField const& name);
STObject(SOTemplate const& type, SerialIter& sit, SField const& name);
STObject(SerialIter& sit, SField const& name, int depth = 0);
STObject(SerialIter&& sit, SField const& name);
explicit STObject(SField const& name);
static STObject
makeInnerObject(SField const& name);
iterator
begin() const;
iterator
end() const;
bool
empty() const;
void
reserve(std::size_t n);
void
applyTemplate(SOTemplate const& type);
void
applyTemplateFromSField(SField const&);
bool
isFree() const;
void
set(SOTemplate const&);
bool
set(SerialIter& u, int depth = 0);
SerializedTypeID
getSType() const override;
bool
isEquivalent(STBase const& t) const override;
bool
isDefault() const override;
void
add(Serializer& s) const override;
std::string
getFullText() const override;
std::string
getText() const override;
// TODO(tom): options should be an enum.
Json::Value getJson(JsonOptions = JsonOptions::none) const override;
void
addWithoutSigningFields(Serializer& s) const;
Serializer
getSerializer() const;
template <class... Args>
std::size_t
emplace_back(Args&&... args);
int
getCount() const;
bool setFlag(std::uint32_t);
bool clearFlag(std::uint32_t);
bool isFlag(std::uint32_t) const;
std::uint32_t
getFlags() const;
uint256
getHash(HashPrefix prefix) const;
uint256
getSigningHash(HashPrefix prefix) const;
STBase const&
peekAtIndex(int offset) const;
STBase&
getIndex(int offset);
STBase const*
peekAtPIndex(int offset) const;
STBase*
getPIndex(int offset);
int
getFieldIndex(SField const& field) const;
SField const&
getFieldSType(int index) const;
STBase const&
peekAtField(SField const& field) const;
STBase&
getField(SField const& field);
STBase const*
peekAtPField(SField const& field) const;
STBase*
getPField(SField const& field, bool createOkay = false);
// these throw if the field type doesn't match, or return default values
// if the field is optional but not present
unsigned char
getFieldU8(SField const& field) const;
std::uint16_t
getFieldU16(SField const& field) const;
std::uint32_t
getFieldU32(SField const& field) const;
std::uint64_t
getFieldU64(SField const& field) const;
uint128
getFieldH128(SField const& field) const;
uint160
getFieldH160(SField const& field) const;
uint192
getFieldH192(SField const& field) const;
uint256
getFieldH256(SField const& field) const;
AccountID
getAccountID(SField const& field) const;
Blob
getFieldVL(SField const& field) const;
STAmount const&
getFieldAmount(SField const& field) const;
STPathSet const&
getFieldPathSet(SField const& field) const;
STVector256 const&
getFieldV256(SField const& field) const;
// If not found, returns an object constructed with the given field
STObject
getFieldObject(SField const& field) const;
STArray const&
getFieldArray(SField const& field) const;
STCurrency const&
getFieldCurrency(SField const& field) const;
STNumber const&
getFieldNumber(SField const& field) const;
/** Get the value of a field.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return The value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
typename T::value_type
operator[](TypedField<T> const& f) const;
/** Get the value of a field as a std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return std::nullopt if the field is not present, else the value of
the specified field.
*/
template <class T>
std::optional<std::decay_t<typename T::value_type>>
operator[](OptionaledField<T> const& of) const;
/** Get a modifiable field value.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return A modifiable reference to the value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
ValueProxy<T>
operator[](TypedField<T> const& f);
/** Return a modifiable field value as std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return Transparent proxy object to an `optional` holding a modifiable
reference to the value of the specified field. Returns
std::nullopt if the field is not present.
*/
template <class T>
OptionalProxy<T>
operator[](OptionaledField<T> const& of);
/** Get the value of a field.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return The value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
typename T::value_type
at(TypedField<T> const& f) const;
/** Get the value of a field as std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return std::nullopt if the field is not present, else the value of
the specified field.
*/
template <class T>
std::optional<std::decay_t<typename T::value_type>>
at(OptionaledField<T> const& of) const;
/** Get a modifiable field value.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return A modifiable reference to the value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
ValueProxy<T>
at(TypedField<T> const& f);
/** Return a modifiable field value as std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return Transparent proxy object to an `optional` holding a modifiable
reference to the value of the specified field. Returns
std::nullopt if the field is not present.
*/
template <class T>
OptionalProxy<T>
at(OptionaledField<T> const& of);
/** Set a field.
if the field already exists, it is replaced.
*/
void
set(std::unique_ptr<STBase> v);
void
set(STBase&& v);
void
setFieldU8(SField const& field, unsigned char);
void
setFieldU16(SField const& field, std::uint16_t);
void
setFieldU32(SField const& field, std::uint32_t);
void
setFieldU64(SField const& field, std::uint64_t);
void
setFieldH128(SField const& field, uint128 const&);
void
setFieldH256(SField const& field, uint256 const&);
void
setFieldVL(SField const& field, Blob const&);
void
setFieldVL(SField const& field, Slice const&);
void
setAccountID(SField const& field, AccountID const&);
void
setFieldAmount(SField const& field, STAmount const&);
void
setFieldIssue(SField const& field, STIssue const&);
void
setFieldCurrency(SField const& field, STCurrency const&);
void
setFieldNumber(SField const& field, STNumber const&);
void
setFieldPathSet(SField const& field, STPathSet const&);
void
setFieldV256(SField const& field, STVector256 const& v);
void
setFieldArray(SField const& field, STArray const& v);
template <class Tag>
void
setFieldH160(SField const& field, base_uint<160, Tag> const& v);
STObject&
peekFieldObject(SField const& field);
STArray&
peekFieldArray(SField const& field);
bool
isFieldPresent(SField const& field) const;
STBase*
makeFieldPresent(SField const& field);
void
makeFieldAbsent(SField const& field);
bool
delField(SField const& field);
void
delField(int index);
bool
hasMatchingEntry(STBase const&);
bool
operator==(STObject const& o) const;
bool
operator!=(STObject const& o) const;
class FieldErr;
private:
enum WhichFields : bool {
// These values are carefully chosen to do the right thing if passed
// to SField::shouldInclude (bool)
omitSigningFields = false,
withAllFields = true
};
void
add(Serializer& s, WhichFields whichFields) const;
// Sort the entries in an STObject into the order that they will be
// serialized. Note: they are not sorted into pointer value order, they
// are sorted by SField::fieldCode.
static std::vector<STBase const*>
getSortedFields(STObject const& objToSort, WhichFields whichFields);
// Implementation for getting (most) fields that return by value.
//
// The remove_cv and remove_reference are necessitated by the STBitString
// types. Their value() returns by const ref. We return those types
// by value.
template <
typename T,
typename V = typename std::remove_cv<typename std::remove_reference<
decltype(std::declval<T>().value())>::type>::type>
V
getFieldByValue(SField const& field) const;
// Implementations for getting (most) fields that return by const reference.
//
// If an absent optional field is deserialized we don't have anything
// obvious to return. So we insist on having the call provide an
// 'empty' value we return in that circumstance.
template <typename T, typename V>
V const&
getFieldByConstRef(SField const& field, V const& empty) const;
// Implementation for setting most fields with a setValue() method.
template <typename T, typename V>
void
setFieldUsingSetValue(SField const& field, V value);
// Implementation for setting fields using assignment
template <typename T>
void
setFieldUsingAssignment(SField const& field, T const& value);
// Implementation for peeking STObjects and STArrays
template <typename T>
T&
peekField(SField const& field);
STBase*
copy(std::size_t n, void* buf) const override;
STBase*
move(std::size_t n, void* buf) override;
friend class detail::STVar;
};
//------------------------------------------------------------------------------
template <class T>
class STObject::Proxy
{
public:
using value_type = typename T::value_type;
value_type
value() const;
value_type
operator*() const;
T const*
operator->() const;
protected:
STObject* st_;
SOEStyle style_;
TypedField<T> const* f_;
Proxy(Proxy const&) = default;
Proxy(STObject* st, TypedField<T> const* f);
T const*
find() const;
template <class U>
void
assign(U&& u);
};
// Constraint += and -= ValueProxy operators
// to value types that support arithmetic operations
template <typename U>
concept IsArithmeticNumber = std::is_arithmetic_v<U> ||
std::is_same_v<U, Number> || std::is_same_v<U, STAmount>;
template <
typename U,
typename Value = typename U::value_type,
typename Unit = typename U::unit_type>
concept IsArithmeticValueUnit =
std::is_same_v<U, unit::ValueUnit<Unit, Value>> &&
IsArithmeticNumber<Value> && std::is_class_v<Unit>;
template <typename U, typename Value = typename U::value_type>
concept IsArithmeticST = !IsArithmeticValueUnit<U> && IsArithmeticNumber<Value>;
template <typename U>
concept IsArithmetic =
IsArithmeticNumber<U> || IsArithmeticST<U> || IsArithmeticValueUnit<U>;
template <class T, class U>
concept Addable = requires(T t, U u) { t = t + u; };
template <typename T, typename U>
concept IsArithmeticCompatible =
IsArithmetic<typename T::value_type> && Addable<typename T::value_type, U>;
template <class T>
class STObject::ValueProxy : public Proxy<T>
{
private:
using value_type = typename T::value_type;
public:
ValueProxy(ValueProxy const&) = default;
ValueProxy&
operator=(ValueProxy const&) = delete;
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, ValueProxy&>
operator=(U&& u);
// Convenience operators for value types supporting
// arithmetic operations
template <IsArithmetic U>
requires IsArithmeticCompatible<T, U>
ValueProxy&
operator+=(U const& u);
template <IsArithmetic U>
requires IsArithmeticCompatible<T, U>
ValueProxy&
operator-=(U const& u);
operator value_type() const;
template <typename U>
friend bool
operator==(U const& lhs, STObject::ValueProxy<T> const& rhs)
{
return rhs.value() == lhs;
}
private:
friend class STObject;
ValueProxy(STObject* st, TypedField<T> const* f);
};
template <class T>
class STObject::OptionalProxy : public Proxy<T>
{
private:
using value_type = typename T::value_type;
using optional_type = std::optional<typename std::decay<value_type>::type>;
public:
OptionalProxy(OptionalProxy const&) = default;
OptionalProxy&
operator=(OptionalProxy const&) = delete;
/** Returns `true` if the field is set.
Fields with soeDEFAULT and set to the
default value will return `true`
*/
explicit
operator bool() const noexcept;
operator optional_type() const;
/** Explicit conversion to std::optional */
optional_type
operator~() const;
friend bool
operator==(OptionalProxy const& lhs, std::nullopt_t) noexcept
{
return !lhs.engaged();
}
friend bool
operator==(std::nullopt_t, OptionalProxy const& rhs) noexcept
{
return rhs == std::nullopt;
}
friend bool
operator==(OptionalProxy const& lhs, optional_type const& rhs) noexcept
{
if (!lhs.engaged())
return !rhs;
if (!rhs)
return false;
return *lhs == *rhs;
}
friend bool
operator==(optional_type const& lhs, OptionalProxy const& rhs) noexcept
{
return rhs == lhs;
}
friend bool
operator==(OptionalProxy const& lhs, OptionalProxy const& rhs) noexcept
{
if (lhs.engaged() != rhs.engaged())
return false;
return !lhs.engaged() || *lhs == *rhs;
}
friend bool
operator!=(OptionalProxy const& lhs, std::nullopt_t) noexcept
{
return !(lhs == std::nullopt);
}
friend bool
operator!=(std::nullopt_t, OptionalProxy const& rhs) noexcept
{
return !(rhs == std::nullopt);
}
friend bool
operator!=(OptionalProxy const& lhs, optional_type const& rhs) noexcept
{
return !(lhs == rhs);
}
friend bool
operator!=(optional_type const& lhs, OptionalProxy const& rhs) noexcept
{
return !(lhs == rhs);
}
friend bool
operator!=(OptionalProxy const& lhs, OptionalProxy const& rhs) noexcept
{
return !(lhs == rhs);
}
// Emulate std::optional::value_or
value_type
value_or(value_type val) const;
OptionalProxy&
operator=(std::nullopt_t const&);
OptionalProxy&
operator=(optional_type&& v);
OptionalProxy&
operator=(optional_type const& v);
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, OptionalProxy&>
operator=(U&& u);
private:
friend class STObject;
OptionalProxy(STObject* st, TypedField<T> const* f);
bool
engaged() const noexcept;
void
disengage();
optional_type
optional_value() const;
};
class STObject::FieldErr : public std::runtime_error
{
using std::runtime_error::runtime_error;
};
template <class T>
STObject::Proxy<T>::Proxy(STObject* st, TypedField<T> const* f) : st_(st), f_(f)
{
if (st_->mType)
{
// STObject has associated template
if (!st_->peekAtPField(*f_))
Throw<STObject::FieldErr>(
"Template field error '" + this->f_->getName() + "'");
style_ = st_->mType->style(*f_);
}
else
{
style_ = soeINVALID;
}
}
template <class T>
auto
STObject::Proxy<T>::value() const -> value_type
{
auto const t = find();
if (t)
return t->value();
if (style_ == soeINVALID)
{
Throw<STObject::FieldErr>("Value requested from invalid STObject.");
}
if (style_ != soeDEFAULT)
{
Throw<STObject::FieldErr>(
"Missing field '" + this->f_->getName() + "'");
}
return value_type{};
}
template <class T>
auto
STObject::Proxy<T>::operator*() const -> value_type
{
return this->value();
}
template <class T>
T const*
STObject::Proxy<T>::operator->() const
{
return this->find();
}
template <class T>
inline T const*
STObject::Proxy<T>::find() const
{
return dynamic_cast<T const*>(st_->peekAtPField(*f_));
}
template <class T>
template <class U>
void
STObject::Proxy<T>::assign(U&& u)
{
if (style_ == soeDEFAULT && u == value_type{})
{
st_->makeFieldAbsent(*f_);
return;
}
T* t;
if (style_ == soeINVALID)
t = dynamic_cast<T*>(st_->getPField(*f_, true));
else
t = dynamic_cast<T*>(st_->makeFieldPresent(*f_));
XRPL_ASSERT(t, "ripple::STObject::Proxy::assign : type cast succeeded");
*t = std::forward<U>(u);
}
//------------------------------------------------------------------------------
template <class T>
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, STObject::ValueProxy<T>&>
STObject::ValueProxy<T>::operator=(U&& u)
{
this->assign(std::forward<U>(u));
return *this;
}
template <typename T>
template <IsArithmetic U>
requires IsArithmeticCompatible<T, U>
STObject::ValueProxy<T>&
STObject::ValueProxy<T>::operator+=(U const& u)
{
this->assign(this->value() + u);
return *this;
}
template <class T>
template <IsArithmetic U>
requires IsArithmeticCompatible<T, U>
STObject::ValueProxy<T>&
STObject::ValueProxy<T>::operator-=(U const& u)
{
this->assign(this->value() - u);
return *this;
}
template <class T>
STObject::ValueProxy<T>::operator value_type() const
{
return this->value();
}
template <class T>
STObject::ValueProxy<T>::ValueProxy(STObject* st, TypedField<T> const* f)
: Proxy<T>(st, f)
{
}
//------------------------------------------------------------------------------
template <class T>
STObject::OptionalProxy<T>::operator bool() const noexcept
{
return engaged();
}
template <class T>
STObject::OptionalProxy<T>::operator typename STObject::OptionalProxy<
T>::optional_type() const
{
return optional_value();
}
template <class T>
typename STObject::OptionalProxy<T>::optional_type
STObject::OptionalProxy<T>::operator~() const
{
return optional_value();
}
template <class T>
auto
STObject::OptionalProxy<T>::operator=(std::nullopt_t const&) -> OptionalProxy&
{
disengage();
return *this;
}
template <class T>
auto
STObject::OptionalProxy<T>::operator=(optional_type&& v) -> OptionalProxy&
{
if (v)
this->assign(std::move(*v));
else
disengage();
return *this;
}
template <class T>
auto
STObject::OptionalProxy<T>::operator=(optional_type const& v) -> OptionalProxy&
{
if (v)
this->assign(*v);
else
disengage();
return *this;
}
template <class T>
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, STObject::OptionalProxy<T>&>
STObject::OptionalProxy<T>::operator=(U&& u)
{
this->assign(std::forward<U>(u));
return *this;
}
template <class T>
STObject::OptionalProxy<T>::OptionalProxy(STObject* st, TypedField<T> const* f)
: Proxy<T>(st, f)
{
}
template <class T>
bool
STObject::OptionalProxy<T>::engaged() const noexcept
{
return this->style_ == soeDEFAULT || this->find() != nullptr;
}
template <class T>
void
STObject::OptionalProxy<T>::disengage()
{
if (this->style_ == soeREQUIRED || this->style_ == soeDEFAULT)
Throw<STObject::FieldErr>(
"Template field error '" + this->f_->getName() + "'");
if (this->style_ == soeINVALID)
this->st_->delField(*this->f_);
else
this->st_->makeFieldAbsent(*this->f_);
}
template <class T>
auto
STObject::OptionalProxy<T>::optional_value() const -> optional_type
{
if (!engaged())
return std::nullopt;
return this->value();
}
template <class T>
typename STObject::OptionalProxy<T>::value_type
STObject::OptionalProxy<T>::value_or(value_type val) const
{
return engaged() ? this->value() : val;
}
//------------------------------------------------------------------------------
inline STBase const&
STObject::Transform::operator()(detail::STVar const& e) const
{
return e.get();
}
//------------------------------------------------------------------------------
inline STObject::STObject(SerialIter&& sit, SField const& name)
: STObject(sit, name)
{
}
inline STObject::iterator
STObject::begin() const
{
return iterator(v_.begin());
}
inline STObject::iterator
STObject::end() const
{
return iterator(v_.end());
}
inline bool
STObject::empty() const
{
return v_.empty();
}
inline void
STObject::reserve(std::size_t n)
{
v_.reserve(n);
}
inline bool
STObject::isFree() const
{
return mType == nullptr;
}
inline void
STObject::addWithoutSigningFields(Serializer& s) const
{
add(s, omitSigningFields);
}
// VFALCO NOTE does this return an expensive copy of an object with a
// dynamic buffer?
// VFALCO TODO Remove this function and fix the few callers.
inline Serializer
STObject::getSerializer() const
{
Serializer s;
add(s, withAllFields);
return s;
}
template <class... Args>
inline std::size_t
STObject::emplace_back(Args&&... args)
{
v_.emplace_back(std::forward<Args>(args)...);
return v_.size() - 1;
}
inline int
STObject::getCount() const
{
return v_.size();
}
inline STBase const&
STObject::peekAtIndex(int offset) const
{
return v_[offset].get();
}
inline STBase&
STObject::getIndex(int offset)
{
return v_[offset].get();
}
inline STBase const*
STObject::peekAtPIndex(int offset) const
{
return &v_[offset].get();
}
inline STBase*
STObject::getPIndex(int offset)
{
return &v_[offset].get();
}
template <class T>
typename T::value_type
STObject::operator[](TypedField<T> const& f) const
{
return at(f);
}
template <class T>
std::optional<std::decay_t<typename T::value_type>>
STObject::operator[](OptionaledField<T> const& of) const
{
return at(of);
}
template <class T>
inline auto
STObject::operator[](TypedField<T> const& f) -> ValueProxy<T>
{
return at(f);
}
template <class T>
inline auto
STObject::operator[](OptionaledField<T> const& of) -> OptionalProxy<T>
{
return at(of);
}
template <class T>
typename T::value_type
STObject::at(TypedField<T> const& f) const
{
auto const b = peekAtPField(f);
if (!b)
// This is a free object (no constraints)
// with no template
Throw<STObject::FieldErr>("Missing field: " + f.getName());
if (auto const u = dynamic_cast<T const*>(b))
return u->value();
XRPL_ASSERT(
mType,
"ripple::STObject::at(TypedField auto) : field template non-null");
XRPL_ASSERT(
b->getSType() == STI_NOTPRESENT,
"ripple::STObject::at(TypedField auto) : type not present");
if (mType->style(f) == soeOPTIONAL)
Throw<STObject::FieldErr>("Missing optional field: " + f.getName());
XRPL_ASSERT(
mType->style(f) == soeDEFAULT,
"ripple::STObject::at(TypedField auto) : template style is default");
// Used to help handle the case where value_type is a const reference,
// otherwise we would return the address of a temporary.
static std::decay_t<typename T::value_type> const dv{};
return dv;
}
template <class T>
std::optional<std::decay_t<typename T::value_type>>
STObject::at(OptionaledField<T> const& of) const
{
auto const b = peekAtPField(*of.f);
if (!b)
return std::nullopt;
auto const u = dynamic_cast<T const*>(b);
if (!u)
{
XRPL_ASSERT(
mType,
"ripple::STObject::at(OptionaledField auto) : field template "
"non-null");
XRPL_ASSERT(
b->getSType() == STI_NOTPRESENT,
"ripple::STObject::at(OptionaledField auto) : type not present");
if (mType->style(*of.f) == soeOPTIONAL)
return std::nullopt;
XRPL_ASSERT(
mType->style(*of.f) == soeDEFAULT,
"ripple::STObject::at(OptionaledField auto) : template style is "
"default");
return typename T::value_type{};
}
return u->value();
}
template <class T>
inline auto
STObject::at(TypedField<T> const& f) -> ValueProxy<T>
{
return ValueProxy<T>(this, &f);
}
template <class T>
inline auto
STObject::at(OptionaledField<T> const& of) -> OptionalProxy<T>
{
return OptionalProxy<T>(this, of.f);
}
template <class Tag>
void
STObject::setFieldH160(SField const& field, base_uint<160, Tag> const& v)
{
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
using Bits = STBitString<160>;
if (auto cf = dynamic_cast<Bits*>(rf))
cf->setValue(v);
else
Throw<std::runtime_error>("Wrong field type");
}
inline bool
STObject::operator!=(STObject const& o) const
{
return !(*this == o);
}
template <typename T, typename V>
V
STObject::getFieldByValue(SField const& field) const
{
STBase const* rf = peekAtPField(field);
if (!rf)
throwFieldNotFound(field);
SerializedTypeID id = rf->getSType();
if (id == STI_NOTPRESENT)
return V(); // optional field not present
T const* cf = dynamic_cast<T const*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
return cf->value();
}
// Implementations for getting (most) fields that return by const reference.
//
// If an absent optional field is deserialized we don't have anything
// obvious to return. So we insist on having the call provide an
// 'empty' value we return in that circumstance.
template <typename T, typename V>
V const&
STObject::getFieldByConstRef(SField const& field, V const& empty) const
{
STBase const* rf = peekAtPField(field);
if (!rf)
throwFieldNotFound(field);
SerializedTypeID id = rf->getSType();
if (id == STI_NOTPRESENT)
return empty; // optional field not present
T const* cf = dynamic_cast<T const*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
return *cf;
}
// Implementation for setting most fields with a setValue() method.
template <typename T, typename V>
void
STObject::setFieldUsingSetValue(SField const& field, V value)
{
static_assert(!std::is_lvalue_reference<V>::value, "");
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
T* cf = dynamic_cast<T*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
cf->setValue(std::move(value));
}
// Implementation for setting fields using assignment
template <typename T>
void
STObject::setFieldUsingAssignment(SField const& field, T const& value)
{
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
T* cf = dynamic_cast<T*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
(*cf) = value;
}
// Implementation for peeking STObjects and STArrays
template <typename T>
T&
STObject::peekField(SField const& field)
{
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
T* cf = dynamic_cast<T*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
return *cf;
}
} // namespace ripple
#endif