Files
rippled/include/xrpl/basics/scope.h
2025-11-10 11:49:19 -05:00

242 lines
6.0 KiB
C++

#ifndef XRPL_BASICS_SCOPE_H_INCLUDED
#define XRPL_BASICS_SCOPE_H_INCLUDED
#include <xrpl/beast/utility/instrumentation.h>
#include <exception>
#include <mutex>
#include <type_traits>
#include <utility>
namespace xrpl {
// RAII scope helpers. As specified in Library Fundamental, Version 3
// Basic design of idea: https://www.youtube.com/watch?v=WjTrfoiB0MQ
// Specification:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4873.html#scopeguard
// This implementation deviates from the spec slightly:
// The scope_exit and scope_fail constructors taking a functor are not
// permitted to throw an exception. This was done because some compilers
// did not like the superfluous try/catch in the common instantiations
// where the construction was noexcept. Instead a static_assert is used
// to enforce this restriction.
template <class EF>
class scope_exit
{
EF exit_function_;
bool execute_on_destruction_{true};
public:
~scope_exit()
{
if (execute_on_destruction_)
exit_function_();
}
scope_exit(scope_exit&& rhs) noexcept(
std::is_nothrow_move_constructible_v<EF> ||
std::is_nothrow_copy_constructible_v<EF>)
: exit_function_{std::forward<EF>(rhs.exit_function_)}
, execute_on_destruction_{rhs.execute_on_destruction_}
{
rhs.release();
}
scope_exit&
operator=(scope_exit&&) = delete;
template <class EFP>
explicit scope_exit(
EFP&& f,
std::enable_if_t<
!std::is_same_v<std::remove_cv_t<EFP>, scope_exit> &&
std::is_constructible_v<EF, EFP>>* = 0) noexcept
: exit_function_{std::forward<EFP>(f)}
{
static_assert(
std::
is_nothrow_constructible_v<EF, decltype(std::forward<EFP>(f))>);
}
void
release() noexcept
{
execute_on_destruction_ = false;
}
};
template <class EF>
scope_exit(EF) -> scope_exit<EF>;
template <class EF>
class scope_fail
{
EF exit_function_;
bool execute_on_destruction_{true};
int uncaught_on_creation_{std::uncaught_exceptions()};
public:
~scope_fail()
{
if (execute_on_destruction_ &&
std::uncaught_exceptions() > uncaught_on_creation_)
exit_function_();
}
scope_fail(scope_fail&& rhs) noexcept(
std::is_nothrow_move_constructible_v<EF> ||
std::is_nothrow_copy_constructible_v<EF>)
: exit_function_{std::forward<EF>(rhs.exit_function_)}
, execute_on_destruction_{rhs.execute_on_destruction_}
, uncaught_on_creation_{rhs.uncaught_on_creation_}
{
rhs.release();
}
scope_fail&
operator=(scope_fail&&) = delete;
template <class EFP>
explicit scope_fail(
EFP&& f,
std::enable_if_t<
!std::is_same_v<std::remove_cv_t<EFP>, scope_fail> &&
std::is_constructible_v<EF, EFP>>* = 0) noexcept
: exit_function_{std::forward<EFP>(f)}
{
static_assert(
std::
is_nothrow_constructible_v<EF, decltype(std::forward<EFP>(f))>);
}
void
release() noexcept
{
execute_on_destruction_ = false;
}
};
template <class EF>
scope_fail(EF) -> scope_fail<EF>;
template <class EF>
class scope_success
{
EF exit_function_;
bool execute_on_destruction_{true};
int uncaught_on_creation_{std::uncaught_exceptions()};
public:
~scope_success() noexcept(noexcept(exit_function_()))
{
if (execute_on_destruction_ &&
std::uncaught_exceptions() <= uncaught_on_creation_)
exit_function_();
}
scope_success(scope_success&& rhs) noexcept(
std::is_nothrow_move_constructible_v<EF> ||
std::is_nothrow_copy_constructible_v<EF>)
: exit_function_{std::forward<EF>(rhs.exit_function_)}
, execute_on_destruction_{rhs.execute_on_destruction_}
, uncaught_on_creation_{rhs.uncaught_on_creation_}
{
rhs.release();
}
scope_success&
operator=(scope_success&&) = delete;
template <class EFP>
explicit scope_success(
EFP&& f,
std::enable_if_t<
!std::is_same_v<std::remove_cv_t<EFP>, scope_success> &&
std::is_constructible_v<EF, EFP>>* =
0) noexcept(std::is_nothrow_constructible_v<EF, EFP> || std::is_nothrow_constructible_v<EF, EFP&>)
: exit_function_{std::forward<EFP>(f)}
{
}
void
release() noexcept
{
execute_on_destruction_ = false;
}
};
template <class EF>
scope_success(EF) -> scope_success<EF>;
/**
Automatically unlocks and re-locks a unique_lock object.
This is the reverse of a std::unique_lock object - instead of locking the
mutex for the lifetime of this object, it unlocks it.
Make sure you don't try to unlock mutexes that aren't actually locked!
This is essentially a less-versatile boost::reverse_lock.
e.g. @code
std::mutex mut;
for (;;)
{
std::unique_lock myScopedLock{mut};
// mut is now locked
... do some stuff with it locked ..
while (xyz)
{
... do some stuff with it locked ..
scope_unlock unlocker{myScopedLock};
// mut is now unlocked for the remainder of this block,
// and re-locked at the end.
...do some stuff with it unlocked ...
} // mut gets locked here.
} // mut gets unlocked here
@endcode
*/
template <class Mutex>
class scope_unlock
{
std::unique_lock<Mutex>* plock;
public:
explicit scope_unlock(std::unique_lock<Mutex>& lock) noexcept(true)
: plock(&lock)
{
XRPL_ASSERT(
plock->owns_lock(),
"xrpl::scope_unlock::scope_unlock : mutex must be locked");
plock->unlock();
}
// Immovable type
scope_unlock(scope_unlock const&) = delete;
scope_unlock&
operator=(scope_unlock const&) = delete;
~scope_unlock() noexcept(true)
{
plock->lock();
}
};
template <class Mutex>
scope_unlock(std::unique_lock<Mutex>&) -> scope_unlock<Mutex>;
} // namespace xrpl
#endif