Files
rippled/src/ripple/module/data/crypto/CKeyDeterministic.cpp
Tom Ritchford 648ccc7c17 Replace const Type& with Type const& for common types.
* std::string
* RippleAccount
* Account
* Currency
* uint256
* STAmount
* Json::Value
2014-08-04 11:18:44 -07:00

375 lines
9.4 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
namespace ripple {
// #define EC_DEBUG
// Functions to add CKey support for deterministic EC keys
// <-- seed
uint128 CKey::PassPhraseToKey (std::string const& passPhrase)
{
Serializer s;
s.addRaw (passPhrase);
// NIKB TODO this caling sequence is a bit ugly; this should be improved.
uint256 hash256 = s.getSHA512Half ();
uint128 ret (uint128::fromVoid (hash256.data()));
s.secureErase ();
return ret;
}
// --> seed
// <-- private root generator + public root generator
EC_KEY* CKey::GenerateRootDeterministicKey (const uint128& seed)
{
BN_CTX* ctx = BN_CTX_new ();
if (!ctx) return nullptr;
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
if (!pkey)
{
BN_CTX_free (ctx);
return nullptr;
}
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
BIGNUM* order = BN_new ();
if (!order)
{
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return nullptr;
}
if (!EC_GROUP_get_order (EC_KEY_get0_group (pkey), order, ctx))
{
assert (false);
BN_free (order);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return nullptr;
}
BIGNUM* privKey = nullptr;
int seq = 0;
do
{
// private key must be non-zero and less than the curve's order
Serializer s ((128 + 32) / 8);
s.add128 (seed);
s.add32 (seq++);
uint256 root = s.getSHA512Half ();
s.secureErase ();
privKey = BN_bin2bn ((const unsigned char*) &root, sizeof (root), privKey);
if (privKey == nullptr)
{
EC_KEY_free (pkey);
BN_free (order);
BN_CTX_free (ctx);
}
root.zero ();
}
while (BN_is_zero (privKey) || (BN_cmp (privKey, order) >= 0));
BN_free (order);
if (!EC_KEY_set_private_key (pkey, privKey))
{
// set the random point as the private key
assert (false);
EC_KEY_free (pkey);
BN_clear_free (privKey);
BN_CTX_free (ctx);
return nullptr;
}
EC_POINT* pubKey = EC_POINT_new (EC_KEY_get0_group (pkey));
if (!EC_POINT_mul (EC_KEY_get0_group (pkey), pubKey, privKey, nullptr, nullptr, ctx))
{
// compute the corresponding public key point
assert (false);
BN_clear_free (privKey);
EC_POINT_free (pubKey);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return nullptr;
}
BN_clear_free (privKey);
if (!EC_KEY_set_public_key (pkey, pubKey))
{
assert (false);
EC_POINT_free (pubKey);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return nullptr;
}
EC_POINT_free (pubKey);
BN_CTX_free (ctx);
#ifdef EC_DEBUG
assert (EC_KEY_check_key (pkey) == 1); // CAUTION: This check is *very* expensive
#endif
return pkey;
}
// Take ripple address.
// --> root public generator (consumes)
// <-- root public generator in EC format
EC_KEY* CKey::GenerateRootPubKey (BIGNUM* pubGenerator)
{
if (pubGenerator == nullptr)
{
assert (false);
return nullptr;
}
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
if (!pkey)
{
BN_free (pubGenerator);
return nullptr;
}
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
EC_POINT* pubPoint = EC_POINT_bn2point (EC_KEY_get0_group (pkey), pubGenerator, nullptr, nullptr);
BN_free (pubGenerator);
if (!pubPoint)
{
assert (false);
EC_KEY_free (pkey);
return nullptr;
}
if (!EC_KEY_set_public_key (pkey, pubPoint))
{
assert (false);
EC_POINT_free (pubPoint);
EC_KEY_free (pkey);
return nullptr;
}
EC_POINT_free (pubPoint);
return pkey;
}
// --> public generator
static BIGNUM* makeHash (RippleAddress const& pubGen, int seq, BIGNUM* order)
{
int subSeq = 0;
BIGNUM* ret = nullptr;
do
{
Serializer s ((33 * 8 + 32 + 32) / 8);
s.addRaw (pubGen.getGenerator ());
s.add32 (seq);
s.add32 (subSeq++);
uint256 root = s.getSHA512Half ();
s.secureErase ();
ret = BN_bin2bn ((const unsigned char*) &root, sizeof (root), ret);
if (!ret) return nullptr;
}
while (BN_is_zero (ret) || (BN_cmp (ret, order) >= 0));
return ret;
}
// --> public generator
EC_KEY* CKey::GeneratePublicDeterministicKey (RippleAddress const& pubGen, int seq)
{
// publicKey(n) = rootPublicKey EC_POINT_+ Hash(pubHash|seq)*point
BIGNUM* generator = BN_bin2bn (
pubGen.getGenerator ().data (),
pubGen.getGenerator ().size (),
nullptr);
if (generator == nullptr)
return nullptr;
EC_KEY* rootKey = CKey::GenerateRootPubKey (generator);
const EC_POINT* rootPubKey = EC_KEY_get0_public_key (rootKey);
BN_CTX* ctx = BN_CTX_new ();
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
EC_POINT* newPoint = 0;
BIGNUM* order = 0;
BIGNUM* hash = 0;
bool success = true;
if (!ctx || !pkey) success = false;
if (success)
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
if (success)
{
newPoint = EC_POINT_new (EC_KEY_get0_group (pkey));
if (!newPoint) success = false;
}
if (success)
{
order = BN_new ();
if (!order || !EC_GROUP_get_order (EC_KEY_get0_group (pkey), order, ctx))
success = false;
}
// Calculate the private additional key.
if (success)
{
hash = makeHash (pubGen, seq, order);
if (!hash) success = false;
}
if (success)
{
// Calculate the corresponding public key.
EC_POINT_mul (EC_KEY_get0_group (pkey), newPoint, hash, nullptr, nullptr, ctx);
// Add the master public key and set.
EC_POINT_add (EC_KEY_get0_group (pkey), newPoint, newPoint, rootPubKey, ctx);
EC_KEY_set_public_key (pkey, newPoint);
}
if (order) BN_free (order);
if (hash) BN_free (hash);
if (newPoint) EC_POINT_free (newPoint);
if (ctx) BN_CTX_free (ctx);
if (rootKey) EC_KEY_free (rootKey);
if (pkey && !success) EC_KEY_free (pkey);
return success ? pkey : nullptr;
}
EC_KEY* CKey::GeneratePrivateDeterministicKey (RippleAddress const& pubGen, uint256 const& u, int seq)
{
CBigNum bn (u);
return GeneratePrivateDeterministicKey (pubGen, static_cast<BIGNUM*> (&bn), seq);
}
// --> root private key
EC_KEY* CKey::GeneratePrivateDeterministicKey (RippleAddress const& pubGen, const BIGNUM* rootPrivKey, int seq)
{
// privateKey(n) = (rootPrivateKey + Hash(pubHash|seq)) % order
BN_CTX* ctx = BN_CTX_new ();
if (ctx == nullptr) return nullptr;
EC_KEY* pkey = EC_KEY_new_by_curve_name (NID_secp256k1);
if (pkey == nullptr)
{
BN_CTX_free (ctx);
return nullptr;
}
EC_KEY_set_conv_form (pkey, POINT_CONVERSION_COMPRESSED);
BIGNUM* order = BN_new ();
if (order == nullptr)
{
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return nullptr;
}
if (!EC_GROUP_get_order (EC_KEY_get0_group (pkey), order, ctx))
{
BN_free (order);
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return nullptr;
}
// calculate the private additional key
BIGNUM* privKey = makeHash (pubGen, seq, order);
if (privKey == nullptr)
{
BN_free (order);
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return nullptr;
}
// calculate the final private key
BN_mod_add (privKey, privKey, rootPrivKey, order, ctx);
BN_free (order);
EC_KEY_set_private_key (pkey, privKey);
// compute the corresponding public key
EC_POINT* pubKey = EC_POINT_new (EC_KEY_get0_group (pkey));
if (!pubKey)
{
BN_clear_free (privKey);
BN_CTX_free (ctx);
EC_KEY_free (pkey);
return nullptr;
}
if (EC_POINT_mul (EC_KEY_get0_group (pkey), pubKey, privKey, nullptr, nullptr, ctx) == 0)
{
BN_clear_free (privKey);
EC_POINT_free (pubKey);
EC_KEY_free (pkey);
BN_CTX_free (ctx);
return nullptr;
}
BN_clear_free (privKey);
EC_KEY_set_public_key (pkey, pubKey);
EC_POINT_free (pubKey);
BN_CTX_free (ctx);
return pkey;
}
} // ripple