Files
rippled/include/xrpl/protocol/STObject.h
Bronek Kozicki e514de76ed Add single asset vault (XLS-65d) (#5224)
- Specification: XRPLF/XRPL-Standards#239
- Amendment: `SingleAssetVault`
- Implements a vault feature used to store a fungible asset (XRP, IOU, or MPT, but not NFT) and to receive shares in the vault (an MPT) in exchange.
- A vault can be private or public.
- A private vault can use permissioned domains, subject to the `PermissionedDomains` amendment.
- Shares can be exchanged back into asset with `VaultWithdraw`.
- Permissions on the asset in the vault are transitively applied on shares in the vault.
- Issuer of the asset in the vault can clawback with `VaultClawback`.
- Extended `MPTokenIssuance` with `DomainID`, used by the permissioned domain on the vault shares.

Co-authored-by: John Freeman <jfreeman08@gmail.com>
2025-05-20 14:06:41 -04:00

1253 lines
30 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_STOBJECT_H_INCLUDED
#define RIPPLE_PROTOCOL_STOBJECT_H_INCLUDED
#include <xrpl/basics/CountedObject.h>
#include <xrpl/basics/Slice.h>
#include <xrpl/basics/chrono.h>
#include <xrpl/basics/contract.h>
#include <xrpl/beast/utility/instrumentation.h>
#include <xrpl/protocol/FeeUnits.h>
#include <xrpl/protocol/HashPrefix.h>
#include <xrpl/protocol/SOTemplate.h>
#include <xrpl/protocol/STAmount.h>
#include <xrpl/protocol/STBase.h>
#include <xrpl/protocol/STCurrency.h>
#include <xrpl/protocol/STIssue.h>
#include <xrpl/protocol/STPathSet.h>
#include <xrpl/protocol/STVector256.h>
#include <xrpl/protocol/detail/STVar.h>
#include <boost/iterator/transform_iterator.hpp>
#include <optional>
#include <stdexcept>
#include <type_traits>
#include <utility>
namespace ripple {
class STArray;
inline void
throwFieldNotFound(SField const& field)
{
Throw<std::runtime_error>("Field not found: " + field.getName());
}
class STObject : public STBase, public CountedObject<STObject>
{
// Proxy value for a STBase derived class
template <class T>
class Proxy;
template <class T>
class ValueProxy;
template <class T>
class OptionalProxy;
struct Transform
{
explicit Transform() = default;
using argument_type = detail::STVar;
using result_type = STBase;
STBase const&
operator()(detail::STVar const& e) const;
};
using list_type = std::vector<detail::STVar>;
list_type v_;
SOTemplate const* mType;
public:
using iterator = boost::
transform_iterator<Transform, STObject::list_type::const_iterator>;
virtual ~STObject() = default;
STObject(STObject const&) = default;
template <typename F>
STObject(SOTemplate const& type, SField const& name, F&& f)
: STObject(type, name)
{
f(*this);
}
STObject&
operator=(STObject const&) = default;
STObject(STObject&&);
STObject&
operator=(STObject&& other);
STObject(SOTemplate const& type, SField const& name);
STObject(SOTemplate const& type, SerialIter& sit, SField const& name);
STObject(SerialIter& sit, SField const& name, int depth = 0);
STObject(SerialIter&& sit, SField const& name);
explicit STObject(SField const& name);
static STObject
makeInnerObject(SField const& name);
iterator
begin() const;
iterator
end() const;
bool
empty() const;
void
reserve(std::size_t n);
void
applyTemplate(SOTemplate const& type);
void
applyTemplateFromSField(SField const&);
bool
isFree() const;
void
set(SOTemplate const&);
bool
set(SerialIter& u, int depth = 0);
SerializedTypeID
getSType() const override;
bool
isEquivalent(STBase const& t) const override;
bool
isDefault() const override;
void
add(Serializer& s) const override;
std::string
getFullText() const override;
std::string
getText() const override;
// TODO(tom): options should be an enum.
Json::Value getJson(JsonOptions = JsonOptions::none) const override;
void
addWithoutSigningFields(Serializer& s) const;
Serializer
getSerializer() const;
template <class... Args>
std::size_t
emplace_back(Args&&... args);
int
getCount() const;
bool setFlag(std::uint32_t);
bool clearFlag(std::uint32_t);
bool isFlag(std::uint32_t) const;
std::uint32_t
getFlags() const;
uint256
getHash(HashPrefix prefix) const;
uint256
getSigningHash(HashPrefix prefix) const;
STBase const&
peekAtIndex(int offset) const;
STBase&
getIndex(int offset);
STBase const*
peekAtPIndex(int offset) const;
STBase*
getPIndex(int offset);
int
getFieldIndex(SField const& field) const;
SField const&
getFieldSType(int index) const;
STBase const&
peekAtField(SField const& field) const;
STBase&
getField(SField const& field);
STBase const*
peekAtPField(SField const& field) const;
STBase*
getPField(SField const& field, bool createOkay = false);
// these throw if the field type doesn't match, or return default values
// if the field is optional but not present
unsigned char
getFieldU8(SField const& field) const;
std::uint16_t
getFieldU16(SField const& field) const;
std::uint32_t
getFieldU32(SField const& field) const;
std::uint64_t
getFieldU64(SField const& field) const;
uint128
getFieldH128(SField const& field) const;
uint160
getFieldH160(SField const& field) const;
uint192
getFieldH192(SField const& field) const;
uint256
getFieldH256(SField const& field) const;
AccountID
getAccountID(SField const& field) const;
Blob
getFieldVL(SField const& field) const;
STAmount const&
getFieldAmount(SField const& field) const;
STPathSet const&
getFieldPathSet(SField const& field) const;
STVector256 const&
getFieldV256(SField const& field) const;
STArray const&
getFieldArray(SField const& field) const;
STCurrency const&
getFieldCurrency(SField const& field) const;
STNumber const&
getFieldNumber(SField const& field) const;
/** Get the value of a field.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return The value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
typename T::value_type
operator[](TypedField<T> const& f) const;
/** Get the value of a field as a std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return std::nullopt if the field is not present, else the value of
the specified field.
*/
template <class T>
std::optional<std::decay_t<typename T::value_type>>
operator[](OptionaledField<T> const& of) const;
/** Get a modifiable field value.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return A modifiable reference to the value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
ValueProxy<T>
operator[](TypedField<T> const& f);
/** Return a modifiable field value as std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return Transparent proxy object to an `optional` holding a modifiable
reference to the value of the specified field. Returns
std::nullopt if the field is not present.
*/
template <class T>
OptionalProxy<T>
operator[](OptionaledField<T> const& of);
/** Get the value of a field.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return The value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
typename T::value_type
at(TypedField<T> const& f) const;
/** Get the value of a field as std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return std::nullopt if the field is not present, else the value of
the specified field.
*/
template <class T>
std::optional<std::decay_t<typename T::value_type>>
at(OptionaledField<T> const& of) const;
/** Get a modifiable field value.
@param A TypedField built from an SField value representing the desired
object field. In typical use, the TypedField will be implicitly
constructed.
@return A modifiable reference to the value of the specified field.
@throws STObject::FieldErr if the field is not present.
*/
template <class T>
ValueProxy<T>
at(TypedField<T> const& f);
/** Return a modifiable field value as std::optional
@param An OptionaledField built from an SField value representing the
desired object field. In typical use, the OptionaledField will be
constructed by using the ~ operator on an SField.
@return Transparent proxy object to an `optional` holding a modifiable
reference to the value of the specified field. Returns
std::nullopt if the field is not present.
*/
template <class T>
OptionalProxy<T>
at(OptionaledField<T> const& of);
/** Set a field.
if the field already exists, it is replaced.
*/
void
set(std::unique_ptr<STBase> v);
void
set(STBase&& v);
void
setFieldU8(SField const& field, unsigned char);
void
setFieldU16(SField const& field, std::uint16_t);
void
setFieldU32(SField const& field, std::uint32_t);
void
setFieldU64(SField const& field, std::uint64_t);
void
setFieldH128(SField const& field, uint128 const&);
void
setFieldH256(SField const& field, uint256 const&);
void
setFieldVL(SField const& field, Blob const&);
void
setFieldVL(SField const& field, Slice const&);
void
setAccountID(SField const& field, AccountID const&);
void
setFieldAmount(SField const& field, STAmount const&);
void
setFieldIssue(SField const& field, STIssue const&);
void
setFieldCurrency(SField const& field, STCurrency const&);
void
setFieldNumber(SField const& field, STNumber const&);
void
setFieldPathSet(SField const& field, STPathSet const&);
void
setFieldV256(SField const& field, STVector256 const& v);
void
setFieldArray(SField const& field, STArray const& v);
template <class Tag>
void
setFieldH160(SField const& field, base_uint<160, Tag> const& v);
STObject&
peekFieldObject(SField const& field);
STArray&
peekFieldArray(SField const& field);
bool
isFieldPresent(SField const& field) const;
STBase*
makeFieldPresent(SField const& field);
void
makeFieldAbsent(SField const& field);
bool
delField(SField const& field);
void
delField(int index);
bool
hasMatchingEntry(STBase const&);
bool
operator==(STObject const& o) const;
bool
operator!=(STObject const& o) const;
class FieldErr;
private:
enum WhichFields : bool {
// These values are carefully chosen to do the right thing if passed
// to SField::shouldInclude (bool)
omitSigningFields = false,
withAllFields = true
};
void
add(Serializer& s, WhichFields whichFields) const;
// Sort the entries in an STObject into the order that they will be
// serialized. Note: they are not sorted into pointer value order, they
// are sorted by SField::fieldCode.
static std::vector<STBase const*>
getSortedFields(STObject const& objToSort, WhichFields whichFields);
// Implementation for getting (most) fields that return by value.
//
// The remove_cv and remove_reference are necessitated by the STBitString
// types. Their value() returns by const ref. We return those types
// by value.
template <
typename T,
typename V = typename std::remove_cv<typename std::remove_reference<
decltype(std::declval<T>().value())>::type>::type>
V
getFieldByValue(SField const& field) const;
// Implementations for getting (most) fields that return by const reference.
//
// If an absent optional field is deserialized we don't have anything
// obvious to return. So we insist on having the call provide an
// 'empty' value we return in that circumstance.
template <typename T, typename V>
V const&
getFieldByConstRef(SField const& field, V const& empty) const;
// Implementation for setting most fields with a setValue() method.
template <typename T, typename V>
void
setFieldUsingSetValue(SField const& field, V value);
// Implementation for setting fields using assignment
template <typename T>
void
setFieldUsingAssignment(SField const& field, T const& value);
// Implementation for peeking STObjects and STArrays
template <typename T>
T&
peekField(SField const& field);
STBase*
copy(std::size_t n, void* buf) const override;
STBase*
move(std::size_t n, void* buf) override;
friend class detail::STVar;
};
//------------------------------------------------------------------------------
template <class T>
class STObject::Proxy
{
public:
using value_type = typename T::value_type;
value_type
value() const;
value_type
operator*() const;
T const*
operator->() const;
protected:
STObject* st_;
SOEStyle style_;
TypedField<T> const* f_;
Proxy(Proxy const&) = default;
Proxy(STObject* st, TypedField<T> const* f);
T const*
find() const;
template <class U>
void
assign(U&& u);
};
// Constraint += and -= ValueProxy operators
// to value types that support arithmetic operations
template <typename U>
concept IsArithmetic = std::is_arithmetic_v<U> || std::is_same_v<U, STAmount>;
template <class T>
class STObject::ValueProxy : public Proxy<T>
{
private:
using value_type = typename T::value_type;
public:
ValueProxy(ValueProxy const&) = default;
ValueProxy&
operator=(ValueProxy const&) = delete;
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, ValueProxy&>
operator=(U&& u);
// Convenience operators for value types supporting
// arithmetic operations
template <IsArithmetic U>
ValueProxy&
operator+=(U const& u);
template <IsArithmetic U>
ValueProxy&
operator-=(U const& u);
operator value_type() const;
template <typename U>
friend bool
operator==(U const& lhs, STObject::ValueProxy<T> const& rhs)
{
return rhs.value() == lhs;
}
private:
friend class STObject;
ValueProxy(STObject* st, TypedField<T> const* f);
};
template <class T>
class STObject::OptionalProxy : public Proxy<T>
{
private:
using value_type = typename T::value_type;
using optional_type = std::optional<typename std::decay<value_type>::type>;
public:
OptionalProxy(OptionalProxy const&) = default;
OptionalProxy&
operator=(OptionalProxy const&) = delete;
/** Returns `true` if the field is set.
Fields with soeDEFAULT and set to the
default value will return `true`
*/
explicit
operator bool() const noexcept;
operator optional_type() const;
/** Explicit conversion to std::optional */
optional_type
operator~() const;
friend bool
operator==(OptionalProxy const& lhs, std::nullopt_t) noexcept
{
return !lhs.engaged();
}
friend bool
operator==(std::nullopt_t, OptionalProxy const& rhs) noexcept
{
return rhs == std::nullopt;
}
friend bool
operator==(OptionalProxy const& lhs, optional_type const& rhs) noexcept
{
if (!lhs.engaged())
return !rhs;
if (!rhs)
return false;
return *lhs == *rhs;
}
friend bool
operator==(optional_type const& lhs, OptionalProxy const& rhs) noexcept
{
return rhs == lhs;
}
friend bool
operator==(OptionalProxy const& lhs, OptionalProxy const& rhs) noexcept
{
if (lhs.engaged() != rhs.engaged())
return false;
return !lhs.engaged() || *lhs == *rhs;
}
friend bool
operator!=(OptionalProxy const& lhs, std::nullopt_t) noexcept
{
return !(lhs == std::nullopt);
}
friend bool
operator!=(std::nullopt_t, OptionalProxy const& rhs) noexcept
{
return !(rhs == std::nullopt);
}
friend bool
operator!=(OptionalProxy const& lhs, optional_type const& rhs) noexcept
{
return !(lhs == rhs);
}
friend bool
operator!=(optional_type const& lhs, OptionalProxy const& rhs) noexcept
{
return !(lhs == rhs);
}
friend bool
operator!=(OptionalProxy const& lhs, OptionalProxy const& rhs) noexcept
{
return !(lhs == rhs);
}
// Emulate std::optional::value_or
value_type
value_or(value_type val) const;
OptionalProxy&
operator=(std::nullopt_t const&);
OptionalProxy&
operator=(optional_type&& v);
OptionalProxy&
operator=(optional_type const& v);
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, OptionalProxy&>
operator=(U&& u);
private:
friend class STObject;
OptionalProxy(STObject* st, TypedField<T> const* f);
bool
engaged() const noexcept;
void
disengage();
optional_type
optional_value() const;
};
class STObject::FieldErr : public std::runtime_error
{
using std::runtime_error::runtime_error;
};
template <class T>
STObject::Proxy<T>::Proxy(STObject* st, TypedField<T> const* f) : st_(st), f_(f)
{
if (st_->mType)
{
// STObject has associated template
if (!st_->peekAtPField(*f_))
Throw<STObject::FieldErr>(
"Template field error '" + this->f_->getName() + "'");
style_ = st_->mType->style(*f_);
}
else
{
style_ = soeINVALID;
}
}
template <class T>
auto
STObject::Proxy<T>::value() const -> value_type
{
auto const t = find();
if (t)
return t->value();
if (style_ == soeINVALID)
{
Throw<STObject::FieldErr>("Value requested from invalid STObject.");
}
if (style_ != soeDEFAULT)
{
Throw<STObject::FieldErr>(
"Missing field '" + this->f_->getName() + "'");
}
return value_type{};
}
template <class T>
auto
STObject::Proxy<T>::operator*() const -> value_type
{
return this->value();
}
template <class T>
T const*
STObject::Proxy<T>::operator->() const
{
return this->find();
}
template <class T>
inline T const*
STObject::Proxy<T>::find() const
{
return dynamic_cast<T const*>(st_->peekAtPField(*f_));
}
template <class T>
template <class U>
void
STObject::Proxy<T>::assign(U&& u)
{
if (style_ == soeDEFAULT && u == value_type{})
{
st_->makeFieldAbsent(*f_);
return;
}
T* t;
if (style_ == soeINVALID)
t = dynamic_cast<T*>(st_->getPField(*f_, true));
else
t = dynamic_cast<T*>(st_->makeFieldPresent(*f_));
XRPL_ASSERT(t, "ripple::STObject::Proxy::assign : type cast succeeded");
*t = std::forward<U>(u);
}
//------------------------------------------------------------------------------
template <class T>
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, STObject::ValueProxy<T>&>
STObject::ValueProxy<T>::operator=(U&& u)
{
this->assign(std::forward<U>(u));
return *this;
}
template <typename T>
template <IsArithmetic U>
STObject::ValueProxy<T>&
STObject::ValueProxy<T>::operator+=(U const& u)
{
this->assign(this->value() + u);
return *this;
}
template <class T>
template <IsArithmetic U>
STObject::ValueProxy<T>&
STObject::ValueProxy<T>::operator-=(U const& u)
{
this->assign(this->value() - u);
return *this;
}
template <class T>
STObject::ValueProxy<T>::operator value_type() const
{
return this->value();
}
template <class T>
STObject::ValueProxy<T>::ValueProxy(STObject* st, TypedField<T> const* f)
: Proxy<T>(st, f)
{
}
//------------------------------------------------------------------------------
template <class T>
STObject::OptionalProxy<T>::operator bool() const noexcept
{
return engaged();
}
template <class T>
STObject::OptionalProxy<T>::operator typename STObject::OptionalProxy<
T>::optional_type() const
{
return optional_value();
}
template <class T>
typename STObject::OptionalProxy<T>::optional_type
STObject::OptionalProxy<T>::operator~() const
{
return optional_value();
}
template <class T>
auto
STObject::OptionalProxy<T>::operator=(std::nullopt_t const&) -> OptionalProxy&
{
disengage();
return *this;
}
template <class T>
auto
STObject::OptionalProxy<T>::operator=(optional_type&& v) -> OptionalProxy&
{
if (v)
this->assign(std::move(*v));
else
disengage();
return *this;
}
template <class T>
auto
STObject::OptionalProxy<T>::operator=(optional_type const& v) -> OptionalProxy&
{
if (v)
this->assign(*v);
else
disengage();
return *this;
}
template <class T>
template <class U>
std::enable_if_t<std::is_assignable_v<T, U>, STObject::OptionalProxy<T>&>
STObject::OptionalProxy<T>::operator=(U&& u)
{
this->assign(std::forward<U>(u));
return *this;
}
template <class T>
STObject::OptionalProxy<T>::OptionalProxy(STObject* st, TypedField<T> const* f)
: Proxy<T>(st, f)
{
}
template <class T>
bool
STObject::OptionalProxy<T>::engaged() const noexcept
{
return this->style_ == soeDEFAULT || this->find() != nullptr;
}
template <class T>
void
STObject::OptionalProxy<T>::disengage()
{
if (this->style_ == soeREQUIRED || this->style_ == soeDEFAULT)
Throw<STObject::FieldErr>(
"Template field error '" + this->f_->getName() + "'");
if (this->style_ == soeINVALID)
this->st_->delField(*this->f_);
else
this->st_->makeFieldAbsent(*this->f_);
}
template <class T>
auto
STObject::OptionalProxy<T>::optional_value() const -> optional_type
{
if (!engaged())
return std::nullopt;
return this->value();
}
template <class T>
typename STObject::OptionalProxy<T>::value_type
STObject::OptionalProxy<T>::value_or(value_type val) const
{
return engaged() ? this->value() : val;
}
//------------------------------------------------------------------------------
inline STBase const&
STObject::Transform::operator()(detail::STVar const& e) const
{
return e.get();
}
//------------------------------------------------------------------------------
inline STObject::STObject(SerialIter&& sit, SField const& name)
: STObject(sit, name)
{
}
inline STObject::iterator
STObject::begin() const
{
return iterator(v_.begin());
}
inline STObject::iterator
STObject::end() const
{
return iterator(v_.end());
}
inline bool
STObject::empty() const
{
return v_.empty();
}
inline void
STObject::reserve(std::size_t n)
{
v_.reserve(n);
}
inline bool
STObject::isFree() const
{
return mType == nullptr;
}
inline void
STObject::addWithoutSigningFields(Serializer& s) const
{
add(s, omitSigningFields);
}
// VFALCO NOTE does this return an expensive copy of an object with a
// dynamic buffer?
// VFALCO TODO Remove this function and fix the few callers.
inline Serializer
STObject::getSerializer() const
{
Serializer s;
add(s, withAllFields);
return s;
}
template <class... Args>
inline std::size_t
STObject::emplace_back(Args&&... args)
{
v_.emplace_back(std::forward<Args>(args)...);
return v_.size() - 1;
}
inline int
STObject::getCount() const
{
return v_.size();
}
inline STBase const&
STObject::peekAtIndex(int offset) const
{
return v_[offset].get();
}
inline STBase&
STObject::getIndex(int offset)
{
return v_[offset].get();
}
inline STBase const*
STObject::peekAtPIndex(int offset) const
{
return &v_[offset].get();
}
inline STBase*
STObject::getPIndex(int offset)
{
return &v_[offset].get();
}
template <class T>
typename T::value_type
STObject::operator[](TypedField<T> const& f) const
{
return at(f);
}
template <class T>
std::optional<std::decay_t<typename T::value_type>>
STObject::operator[](OptionaledField<T> const& of) const
{
return at(of);
}
template <class T>
inline auto
STObject::operator[](TypedField<T> const& f) -> ValueProxy<T>
{
return at(f);
}
template <class T>
inline auto
STObject::operator[](OptionaledField<T> const& of) -> OptionalProxy<T>
{
return at(of);
}
template <class T>
typename T::value_type
STObject::at(TypedField<T> const& f) const
{
auto const b = peekAtPField(f);
if (!b)
// This is a free object (no constraints)
// with no template
Throw<STObject::FieldErr>("Missing field: " + f.getName());
if (auto const u = dynamic_cast<T const*>(b))
return u->value();
XRPL_ASSERT(
mType,
"ripple::STObject::at(TypedField auto) : field template non-null");
XRPL_ASSERT(
b->getSType() == STI_NOTPRESENT,
"ripple::STObject::at(TypedField auto) : type not present");
if (mType->style(f) == soeOPTIONAL)
Throw<STObject::FieldErr>("Missing optional field: " + f.getName());
XRPL_ASSERT(
mType->style(f) == soeDEFAULT,
"ripple::STObject::at(TypedField auto) : template style is default");
// Used to help handle the case where value_type is a const reference,
// otherwise we would return the address of a temporary.
static std::decay_t<typename T::value_type> const dv{};
return dv;
}
template <class T>
std::optional<std::decay_t<typename T::value_type>>
STObject::at(OptionaledField<T> const& of) const
{
auto const b = peekAtPField(*of.f);
if (!b)
return std::nullopt;
auto const u = dynamic_cast<T const*>(b);
if (!u)
{
XRPL_ASSERT(
mType,
"ripple::STObject::at(OptionaledField auto) : field template "
"non-null");
XRPL_ASSERT(
b->getSType() == STI_NOTPRESENT,
"ripple::STObject::at(OptionaledField auto) : type not present");
if (mType->style(*of.f) == soeOPTIONAL)
return std::nullopt;
XRPL_ASSERT(
mType->style(*of.f) == soeDEFAULT,
"ripple::STObject::at(OptionaledField auto) : template style is "
"default");
return typename T::value_type{};
}
return u->value();
}
template <class T>
inline auto
STObject::at(TypedField<T> const& f) -> ValueProxy<T>
{
return ValueProxy<T>(this, &f);
}
template <class T>
inline auto
STObject::at(OptionaledField<T> const& of) -> OptionalProxy<T>
{
return OptionalProxy<T>(this, of.f);
}
template <class Tag>
void
STObject::setFieldH160(SField const& field, base_uint<160, Tag> const& v)
{
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
using Bits = STBitString<160>;
if (auto cf = dynamic_cast<Bits*>(rf))
cf->setValue(v);
else
Throw<std::runtime_error>("Wrong field type");
}
inline bool
STObject::operator!=(STObject const& o) const
{
return !(*this == o);
}
template <typename T, typename V>
V
STObject::getFieldByValue(SField const& field) const
{
STBase const* rf = peekAtPField(field);
if (!rf)
throwFieldNotFound(field);
SerializedTypeID id = rf->getSType();
if (id == STI_NOTPRESENT)
return V(); // optional field not present
T const* cf = dynamic_cast<T const*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
return cf->value();
}
// Implementations for getting (most) fields that return by const reference.
//
// If an absent optional field is deserialized we don't have anything
// obvious to return. So we insist on having the call provide an
// 'empty' value we return in that circumstance.
template <typename T, typename V>
V const&
STObject::getFieldByConstRef(SField const& field, V const& empty) const
{
STBase const* rf = peekAtPField(field);
if (!rf)
throwFieldNotFound(field);
SerializedTypeID id = rf->getSType();
if (id == STI_NOTPRESENT)
return empty; // optional field not present
T const* cf = dynamic_cast<T const*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
return *cf;
}
// Implementation for setting most fields with a setValue() method.
template <typename T, typename V>
void
STObject::setFieldUsingSetValue(SField const& field, V value)
{
static_assert(!std::is_lvalue_reference<V>::value, "");
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
T* cf = dynamic_cast<T*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
cf->setValue(std::move(value));
}
// Implementation for setting fields using assignment
template <typename T>
void
STObject::setFieldUsingAssignment(SField const& field, T const& value)
{
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
T* cf = dynamic_cast<T*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
(*cf) = value;
}
// Implementation for peeking STObjects and STArrays
template <typename T>
T&
STObject::peekField(SField const& field)
{
STBase* rf = getPField(field, true);
if (!rf)
throwFieldNotFound(field);
if (rf->getSType() == STI_NOTPRESENT)
rf = makeFieldPresent(field);
T* cf = dynamic_cast<T*>(rf);
if (!cf)
Throw<std::runtime_error>("Wrong field type");
return *cf;
}
} // namespace ripple
#endif