Files
rippled/include/xrpl/protocol/SecretKey.h
Bart 2406b28e64 refactor: Remove unused and add missing includes (#5293)
The codebase is filled with includes that are unused, and which thus can be removed. At the same time, the files often do not include all headers that contain the definitions used in those files. This change uses clang-format and clang-tidy to clean up the includes, with minor manual intervention to ensure the code compiles on all platforms.
2025-03-11 14:16:45 -04:00

187 lines
4.6 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_SECRETKEY_H_INCLUDED
#define RIPPLE_PROTOCOL_SECRETKEY_H_INCLUDED
#include <xrpl/basics/Buffer.h>
#include <xrpl/basics/Slice.h>
#include <xrpl/protocol/KeyType.h>
#include <xrpl/protocol/PublicKey.h>
#include <xrpl/protocol/Seed.h>
#include <xrpl/protocol/tokens.h>
#include <array>
#include <cstring>
#include <string>
namespace ripple {
/** A secret key. */
class SecretKey
{
private:
std::uint8_t buf_[32];
public:
using const_iterator = std::uint8_t const*;
SecretKey() = delete;
SecretKey(SecretKey const&) = default;
SecretKey&
operator=(SecretKey const&) = default;
~SecretKey();
SecretKey(std::array<std::uint8_t, 32> const& data);
SecretKey(Slice const& slice);
std::uint8_t const*
data() const
{
return buf_;
}
std::size_t
size() const
{
return sizeof(buf_);
}
/** Convert the secret key to a hexadecimal string.
@note The operator<< function is deliberately omitted
to avoid accidental exposure of secret key material.
*/
std::string
to_string() const;
const_iterator
begin() const noexcept
{
return buf_;
}
const_iterator
cbegin() const noexcept
{
return buf_;
}
const_iterator
end() const noexcept
{
return buf_ + sizeof(buf_);
}
const_iterator
cend() const noexcept
{
return buf_ + sizeof(buf_);
}
};
inline bool
operator==(SecretKey const& lhs, SecretKey const& rhs)
{
return lhs.size() == rhs.size() &&
std::memcmp(lhs.data(), rhs.data(), rhs.size()) == 0;
}
inline bool
operator!=(SecretKey const& lhs, SecretKey const& rhs)
{
return !(lhs == rhs);
}
//------------------------------------------------------------------------------
/** Parse a secret key */
template <>
std::optional<SecretKey>
parseBase58(TokenType type, std::string const& s);
inline std::string
toBase58(TokenType type, SecretKey const& sk)
{
return encodeBase58Token(type, sk.data(), sk.size());
}
/** Create a secret key using secure random numbers. */
SecretKey
randomSecretKey();
/** Generate a new secret key deterministically. */
SecretKey
generateSecretKey(KeyType type, Seed const& seed);
/** Derive the public key from a secret key. */
PublicKey
derivePublicKey(KeyType type, SecretKey const& sk);
/** Generate a key pair deterministically.
This algorithm is specific to Ripple:
For secp256k1 key pairs, the seed is converted
to a Generator and used to compute the key pair
corresponding to ordinal 0 for the generator.
*/
std::pair<PublicKey, SecretKey>
generateKeyPair(KeyType type, Seed const& seed);
/** Create a key pair using secure random numbers. */
std::pair<PublicKey, SecretKey>
randomKeyPair(KeyType type);
/** Generate a signature for a message digest.
This can only be used with secp256k1 since Ed25519's
security properties come, in part, from how the message
is hashed.
*/
/** @{ */
Buffer
signDigest(PublicKey const& pk, SecretKey const& sk, uint256 const& digest);
inline Buffer
signDigest(KeyType type, SecretKey const& sk, uint256 const& digest)
{
return signDigest(derivePublicKey(type, sk), sk, digest);
}
/** @} */
/** Generate a signature for a message.
With secp256k1 signatures, the data is first hashed with
SHA512-Half, and the resulting digest is signed.
*/
/** @{ */
Buffer
sign(PublicKey const& pk, SecretKey const& sk, Slice const& message);
inline Buffer
sign(KeyType type, SecretKey const& sk, Slice const& message)
{
return sign(derivePublicKey(type, sk), sk, message);
}
/** @} */
} // namespace ripple
#endif