Files
rippled/src/test/protocol/STObject_test.cpp
Scott Schurr 3b33318dc8 Prefer std::optional over boost:optional:
Some of the boost::optionals must remain for now.  Both
boost::beast and SOCI have interfaces that require
boost::optional.
2021-03-11 14:35:31 -08:00

726 lines
23 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <ripple/basics/Log.h>
#include <ripple/beast/unit_test.h>
#include <ripple/json/json_reader.h>
#include <ripple/json/to_string.h>
#include <ripple/protocol/SecretKey.h>
#include <ripple/protocol/jss.h>
#include <ripple/protocol/st.h>
#include <test/jtx.h>
#include <array>
#include <memory>
#include <type_traits>
namespace ripple {
class STObject_test : public beast::unit_test::suite
{
public:
bool
parseJSONString(std::string const& json, Json::Value& to)
{
Json::Reader reader;
return reader.parse(json, to) && to.isObject();
}
void
testParseJSONArrayWithInvalidChildrenObjects()
{
testcase("parse json array invalid children");
try
{
/*
STArray/STObject constructs don't really map perfectly to json
arrays/objects.
STObject is an associative container, mapping fields to value, but
an STObject may also have a Field as its name, stored outside the
associative structure. The name is important, so to maintain
fidelity, it will take TWO json objects to represent them.
*/
std::string faulty(
"{\"Template\":[{"
"\"ModifiedNode\":{\"Sequence\":1}, "
"\"DeletedNode\":{\"Sequence\":1}"
"}]}");
std::unique_ptr<STObject> so;
Json::Value faultyJson;
bool parsedOK(parseJSONString(faulty, faultyJson));
unexpected(!parsedOK, "failed to parse");
STParsedJSONObject parsed("test", faultyJson);
BEAST_EXPECT(!parsed.object);
}
catch (std::runtime_error& e)
{
std::string what(e.what());
unexpected(what.find("First level children of `Template`") != 0);
}
}
void
testParseJSONArray()
{
testcase("parse json array");
std::string const json(
"{\"Template\":[{\"ModifiedNode\":{\"Sequence\":1}}]}");
Json::Value jsonObject;
bool parsedOK(parseJSONString(json, jsonObject));
if (parsedOK)
{
STParsedJSONObject parsed("test", jsonObject);
BEAST_EXPECT(parsed.object);
std::string const& serialized(
to_string(parsed.object->getJson(JsonOptions::none)));
BEAST_EXPECT(serialized == json);
}
else
{
fail("Couldn't parse json: " + json);
}
}
void
testParseJSONEdgeCases()
{
testcase("parse json object");
{
std::string const goodJson(R"({"CloseResolution":19,"Method":250,)"
R"("TransactionResult":"tecFROZEN"})");
Json::Value jv;
if (BEAST_EXPECT(parseJSONString(goodJson, jv)))
{
STParsedJSONObject parsed("test", jv);
if (BEAST_EXPECT(parsed.object))
{
std::string const& serialized(
to_string(parsed.object->getJson(JsonOptions::none)));
BEAST_EXPECT(serialized == goodJson);
}
}
}
{
std::string const goodJson(
R"({"CloseResolution":19,"Method":"250",)"
R"("TransactionResult":"tecFROZEN"})");
std::string const expectedJson(
R"({"CloseResolution":19,"Method":250,)"
R"("TransactionResult":"tecFROZEN"})");
Json::Value jv;
if (BEAST_EXPECT(parseJSONString(goodJson, jv)))
{
// Integer values are always parsed as int,
// unless they're too big. We want a small uint.
jv["CloseResolution"] = Json::UInt(19);
STParsedJSONObject parsed("test", jv);
if (BEAST_EXPECT(parsed.object))
{
std::string const& serialized(
to_string(parsed.object->getJson(JsonOptions::none)));
BEAST_EXPECT(serialized == expectedJson);
}
}
}
{
std::string const json(R"({"CloseResolution":19,"Method":250,)"
R"("TransactionResult":"terQUEUED"})");
Json::Value jv;
if (BEAST_EXPECT(parseJSONString(json, jv)))
{
STParsedJSONObject parsed("test", jv);
BEAST_EXPECT(!parsed.object);
BEAST_EXPECT(parsed.error);
BEAST_EXPECT(parsed.error[jss::error] == "invalidParams");
BEAST_EXPECT(
parsed.error[jss::error_message] ==
"Field 'test.TransactionResult' is out of range.");
}
}
{
std::string const json(R"({"CloseResolution":19,"Method":"pony",)"
R"("TransactionResult":"tesSUCCESS"})");
Json::Value jv;
if (BEAST_EXPECT(parseJSONString(json, jv)))
{
STParsedJSONObject parsed("test", jv);
BEAST_EXPECT(!parsed.object);
BEAST_EXPECT(parsed.error);
BEAST_EXPECT(parsed.error[jss::error] == "invalidParams");
BEAST_EXPECT(
parsed.error[jss::error_message] ==
"Field 'test.Method' has bad type.");
}
}
{
std::string const json(
R"({"CloseResolution":19,"Method":3294967296,)"
R"("TransactionResult":"tesSUCCESS"})");
Json::Value jv;
if (BEAST_EXPECT(parseJSONString(json, jv)))
{
STParsedJSONObject parsed("test", jv);
BEAST_EXPECT(!parsed.object);
BEAST_EXPECT(parsed.error);
BEAST_EXPECT(parsed.error[jss::error] == "invalidParams");
BEAST_EXPECT(
parsed.error[jss::error_message] ==
"Field 'test.Method' is out of range.");
}
}
{
std::string const json(R"({"CloseResolution":-10,"Method":42,)"
R"("TransactionResult":"tesSUCCESS"})");
Json::Value jv;
if (BEAST_EXPECT(parseJSONString(json, jv)))
{
STParsedJSONObject parsed("test", jv);
BEAST_EXPECT(!parsed.object);
BEAST_EXPECT(parsed.error);
BEAST_EXPECT(parsed.error[jss::error] == "invalidParams");
BEAST_EXPECT(
parsed.error[jss::error_message] ==
"Field 'test.CloseResolution' is out of range.");
}
}
{
std::string const json(
R"({"CloseResolution":19,"Method":3.141592653,)"
R"("TransactionResult":"tesSUCCESS"})");
Json::Value jv;
if (BEAST_EXPECT(parseJSONString(json, jv)))
{
STParsedJSONObject parsed("test", jv);
BEAST_EXPECT(!parsed.object);
BEAST_EXPECT(parsed.error);
BEAST_EXPECT(parsed.error[jss::error] == "invalidParams");
BEAST_EXPECT(
parsed.error[jss::error_message] ==
"Field 'test.Method' has bad type.");
}
}
}
void
testSerialization()
{
testcase("serialization");
unexpected(sfGeneric.isUseful(), "sfGeneric must not be useful");
{
// Try to put sfGeneric in an SOTemplate.
except<std::runtime_error>([&]() {
SOTemplate elements{{sfGeneric, soeREQUIRED}};
});
}
unexpected(sfInvalid.isUseful(), "sfInvalid must not be useful");
{
// Test return of sfInvalid.
auto testInvalid = [this](SerializedTypeID tid, int fv) {
SField const& shouldBeInvalid{SField::getField(tid, fv)};
BEAST_EXPECT(shouldBeInvalid == sfInvalid);
};
testInvalid(STI_VL, 255);
testInvalid(STI_HASH256, 255);
testInvalid(STI_UINT32, 255);
testInvalid(STI_VECTOR256, 255);
testInvalid(STI_OBJECT, 255);
}
{
// Try to put sfInvalid in an SOTemplate.
except<std::runtime_error>([&]() {
SOTemplate elements{{sfInvalid, soeREQUIRED}};
});
}
{
// Try to put the same SField into an SOTemplate twice.
except<std::runtime_error>([&]() {
SOTemplate elements{
{sfAccount, soeREQUIRED},
{sfAccount, soeREQUIRED},
};
});
}
// Put a variety of SFields of different types in an SOTemplate.
SField const& sfTestVL = sfMasterSignature;
SField const& sfTestH256 = sfCheckID;
SField const& sfTestU32 = sfSettleDelay;
SField const& sfTestV256 = sfAmendments;
SField const& sfTestObject = sfMajority;
SOTemplate const elements{
{sfFlags, soeREQUIRED},
{sfTestVL, soeREQUIRED},
{sfTestH256, soeOPTIONAL},
{sfTestU32, soeREQUIRED},
{sfTestV256, soeOPTIONAL},
};
STObject object1(elements, sfTestObject);
STObject object2(object1);
unexpected(
object1.getSerializer() != object2.getSerializer(),
"STObject error 1");
unexpected(
object1.isFieldPresent(sfTestH256) ||
!object1.isFieldPresent(sfTestVL),
"STObject error");
object1.makeFieldPresent(sfTestH256);
unexpected(!object1.isFieldPresent(sfTestH256), "STObject Error 2");
unexpected(
object1.getFieldH256(sfTestH256) != uint256(), "STObject error 3");
if (object1.getSerializer() == object2.getSerializer())
{
log << "O1: " << object1.getJson(JsonOptions::none) << '\n'
<< "O2: " << object2.getJson(JsonOptions::none) << std::endl;
fail("STObject error 4");
}
else
{
pass();
}
object1.makeFieldAbsent(sfTestH256);
unexpected(object1.isFieldPresent(sfTestH256), "STObject error 5");
unexpected(object1.getFlags() != 0, "STObject error 6");
unexpected(
object1.getSerializer() != object2.getSerializer(),
"STObject error 7");
STObject copy(object1);
unexpected(object1.isFieldPresent(sfTestH256), "STObject error 8");
unexpected(copy.isFieldPresent(sfTestH256), "STObject error 9");
unexpected(
object1.getSerializer() != copy.getSerializer(),
"STObject error 10");
copy.setFieldU32(sfTestU32, 1);
unexpected(
object1.getSerializer() == copy.getSerializer(),
"STObject error 11");
for (int i = 0; i < 1000; i++)
{
Blob j(i, 2);
object1.setFieldVL(sfTestVL, j);
Serializer s;
object1.add(s);
SerialIter it(s.slice());
STObject object3(elements, it, sfTestObject);
unexpected(object1.getFieldVL(sfTestVL) != j, "STObject error");
unexpected(object3.getFieldVL(sfTestVL) != j, "STObject error");
}
{
std::vector<uint256> uints;
uints.reserve(5);
for (int i = 0; i < uints.capacity(); ++i)
{
uints.emplace_back(i);
}
object1.setFieldV256(sfTestV256, STVector256(uints));
Serializer s;
object1.add(s);
SerialIter it(s.slice());
STObject object3(elements, it, sfTestObject);
auto const& uints1 = object1.getFieldV256(sfTestV256);
auto const& uints3 = object3.getFieldV256(sfTestV256);
BEAST_EXPECT(uints1 == uints3);
}
}
// Exercise field accessors
void
testFields()
{
testcase("fields");
auto const& sf1Outer = sfSequence;
auto const& sf2Outer = sfExpiration;
auto const& sf3Outer = sfQualityIn;
auto const& sf4 = sfSignature;
auto const& sf5 = sfPublicKey;
// read free object
{
auto const st = [&]() {
STObject s(sfGeneric);
s.setFieldU32(sf1Outer, 1);
s.setFieldU32(sf2Outer, 2);
return s;
}();
BEAST_EXPECT(st[sf1Outer] == 1);
BEAST_EXPECT(st[sf2Outer] == 2);
except<STObject::FieldErr>([&]() { st[sf3Outer]; });
BEAST_EXPECT(*st[~sf1Outer] == 1);
BEAST_EXPECT(*st[~sf2Outer] == 2);
BEAST_EXPECT(st[~sf3Outer] == std::nullopt);
BEAST_EXPECT(!!st[~sf1Outer]);
BEAST_EXPECT(!!st[~sf2Outer]);
BEAST_EXPECT(!st[~sf3Outer]);
BEAST_EXPECT(st[sf1Outer] != st[sf2Outer]);
BEAST_EXPECT(st[~sf1Outer] != st[~sf2Outer]);
}
// read templated object
SOTemplate const sotOuter{
{sf1Outer, soeREQUIRED},
{sf2Outer, soeOPTIONAL},
{sf3Outer, soeDEFAULT},
{sf4, soeOPTIONAL},
{sf5, soeDEFAULT},
};
{
auto const st = [&]() {
STObject s(sotOuter, sfGeneric);
s.setFieldU32(sf1Outer, 1);
s.setFieldU32(sf2Outer, 2);
return s;
}();
BEAST_EXPECT(st[sf1Outer] == 1);
BEAST_EXPECT(st[sf2Outer] == 2);
BEAST_EXPECT(st[sf3Outer] == 0);
BEAST_EXPECT(*st[~sf1Outer] == 1);
BEAST_EXPECT(*st[~sf2Outer] == 2);
BEAST_EXPECT(*st[~sf3Outer] == 0);
BEAST_EXPECT(!!st[~sf1Outer]);
BEAST_EXPECT(!!st[~sf2Outer]);
BEAST_EXPECT(!!st[~sf3Outer]);
}
// write free object
{
STObject st(sfGeneric);
unexcept([&]() { st[sf1Outer]; });
except([&]() { return st[sf1Outer] == 0; });
BEAST_EXPECT(st[~sf1Outer] == std::nullopt);
BEAST_EXPECT(st[~sf1Outer] == std::optional<std::uint32_t>{});
BEAST_EXPECT(st[~sf1Outer] != std::optional<std::uint32_t>(1));
BEAST_EXPECT(!st[~sf1Outer]);
st[sf1Outer] = 2;
BEAST_EXPECT(st[sf1Outer] == 2);
BEAST_EXPECT(st[~sf1Outer] != std::nullopt);
BEAST_EXPECT(st[~sf1Outer] == std::optional<std::uint32_t>(2));
BEAST_EXPECT(!!st[~sf1Outer]);
st[sf1Outer] = 1;
BEAST_EXPECT(st[sf1Outer] == 1);
BEAST_EXPECT(!!st[sf1Outer]);
BEAST_EXPECT(!!st[~sf1Outer]);
st[sf1Outer] = 0;
BEAST_EXPECT(!st[sf1Outer]);
BEAST_EXPECT(!!st[~sf1Outer]);
st[~sf1Outer] = std::nullopt;
BEAST_EXPECT(!st[~sf1Outer]);
BEAST_EXPECT(st[~sf1Outer] == std::nullopt);
BEAST_EXPECT(st[~sf1Outer] == std::optional<std::uint32_t>{});
st[~sf1Outer] = std::nullopt;
BEAST_EXPECT(!st[~sf1Outer]);
except([&]() { return st[sf1Outer] == 0; });
except([&]() { return *st[~sf1Outer]; });
st[sf1Outer] = 1;
BEAST_EXPECT(st[sf1Outer] == 1);
BEAST_EXPECT(!!st[sf1Outer]);
BEAST_EXPECT(!!st[~sf1Outer]);
st[sf1Outer] = 3;
st[sf2Outer] = st[sf1Outer];
BEAST_EXPECT(st[sf1Outer] == 3);
BEAST_EXPECT(st[sf2Outer] == 3);
BEAST_EXPECT(st[sf2Outer] == st[sf1Outer]);
st[sf1Outer] = 4;
st[sf2Outer] = st[sf1Outer];
BEAST_EXPECT(st[sf1Outer] == 4);
BEAST_EXPECT(st[sf2Outer] == 4);
BEAST_EXPECT(st[sf2Outer] == st[sf1Outer]);
}
// Write templated object
{
STObject st(sotOuter, sfGeneric);
BEAST_EXPECT(!!st[~sf1Outer]);
BEAST_EXPECT(st[~sf1Outer] != std::nullopt);
BEAST_EXPECT(st[sf1Outer] == 0);
BEAST_EXPECT(*st[~sf1Outer] == 0);
BEAST_EXPECT(!st[~sf2Outer]);
BEAST_EXPECT(st[~sf2Outer] == std::nullopt);
except([&]() { return st[sf2Outer] == 0; });
BEAST_EXPECT(!!st[~sf3Outer]);
BEAST_EXPECT(st[~sf3Outer] != std::nullopt);
BEAST_EXPECT(st[sf3Outer] == 0);
except([&]() { st[~sf1Outer] = std::nullopt; });
st[sf1Outer] = 1;
BEAST_EXPECT(st[sf1Outer] == 1);
BEAST_EXPECT(*st[~sf1Outer] == 1);
BEAST_EXPECT(!!st[~sf1Outer]);
st[sf1Outer] = 0;
BEAST_EXPECT(st[sf1Outer] == 0);
BEAST_EXPECT(*st[~sf1Outer] == 0);
BEAST_EXPECT(!!st[~sf1Outer]);
st[sf2Outer] = 2;
BEAST_EXPECT(st[sf2Outer] == 2);
BEAST_EXPECT(*st[~sf2Outer] == 2);
BEAST_EXPECT(!!st[~sf2Outer]);
st[~sf2Outer] = std::nullopt;
except([&]() { return *st[~sf2Outer]; });
BEAST_EXPECT(!st[~sf2Outer]);
st[sf3Outer] = 3;
BEAST_EXPECT(st[sf3Outer] == 3);
BEAST_EXPECT(*st[~sf3Outer] == 3);
BEAST_EXPECT(!!st[~sf3Outer]);
st[sf3Outer] = 2;
BEAST_EXPECT(st[sf3Outer] == 2);
BEAST_EXPECT(*st[~sf3Outer] == 2);
BEAST_EXPECT(!!st[~sf3Outer]);
st[sf3Outer] = 0;
BEAST_EXPECT(st[sf3Outer] == 0);
BEAST_EXPECT(*st[~sf3Outer] == 0);
BEAST_EXPECT(!!st[~sf3Outer]);
except([&]() { st[~sf3Outer] = std::nullopt; });
BEAST_EXPECT(st[sf3Outer] == 0);
BEAST_EXPECT(*st[~sf3Outer] == 0);
BEAST_EXPECT(!!st[~sf3Outer]);
}
// coercion operator to std::optional
{
STObject st(sfGeneric);
auto const v = ~st[~sf1Outer];
static_assert(
std::is_same<
std::decay_t<decltype(v)>,
std::optional<std::uint32_t>>::value,
"");
}
// UDT scalar fields
{
STObject st(sfGeneric);
st[sfAmount] = STAmount{};
st[sfAccount] = AccountID{};
st[sfDigest] = uint256{};
[&](STAmount) {}(st[sfAmount]);
[&](AccountID) {}(st[sfAccount]);
[&](uint256) {}(st[sfDigest]);
}
// STBlob and slice
{{STObject st(sfGeneric);
Buffer b(1);
BEAST_EXPECT(!b.empty());
st[sf4] = std::move(b);
BEAST_EXPECT(b.empty());
BEAST_EXPECT(Slice(st[sf4]).size() == 1);
st[~sf4] = std::nullopt;
BEAST_EXPECT(!~st[~sf4]);
b = Buffer{2};
st[sf4] = Slice(b);
BEAST_EXPECT(b.size() == 2);
BEAST_EXPECT(Slice(st[sf4]).size() == 2);
st[sf5] = st[sf4];
BEAST_EXPECT(Slice(st[sf4]).size() == 2);
BEAST_EXPECT(Slice(st[sf5]).size() == 2);
}
{
STObject st(sotOuter, sfGeneric);
BEAST_EXPECT(st[sf5] == Slice{});
BEAST_EXPECT(!!st[~sf5]);
BEAST_EXPECT(!!~st[~sf5]);
Buffer b(1);
st[sf5] = std::move(b);
BEAST_EXPECT(b.empty());
BEAST_EXPECT(Slice(st[sf5]).size() == 1);
st[~sf4] = std::nullopt;
BEAST_EXPECT(!~st[~sf4]);
}
}
// UDT blobs
{
STObject st(sfGeneric);
BEAST_EXPECT(!st[~sf5]);
auto const kp =
generateKeyPair(KeyType::secp256k1, generateSeed("masterpassphrase"));
st[sf5] = kp.first;
BEAST_EXPECT(st[sf5] != PublicKey{});
st[~sf5] = std::nullopt;
#if 0
pk = st[sf5];
BEAST_EXPECT(pk.size() == 0);
#endif
}
// By reference fields
{
auto const& sf = sfIndexes;
STObject st(sfGeneric);
std::vector<uint256> v;
v.emplace_back(1);
v.emplace_back(2);
st[sf] = v;
st[sf] = std::move(v);
auto const& cst = st;
BEAST_EXPECT(cst[sf].size() == 2);
BEAST_EXPECT(cst[~sf]->size() == 2);
BEAST_EXPECT(cst[sf][0] == 1);
BEAST_EXPECT(cst[sf][1] == 2);
static_assert(
std::is_same<decltype(cst[sfIndexes]), std::vector<uint256> const&>::
value,
"");
}
// Default by reference field
{
auto const& sf1 = sfIndexes;
auto const& sf2 = sfHashes;
auto const& sf3 = sfAmendments;
SOTemplate const sot{
{sf1, soeREQUIRED},
{sf2, soeOPTIONAL},
{sf3, soeDEFAULT},
};
STObject st(sot, sfGeneric);
auto const& cst(st);
BEAST_EXPECT(cst[sf1].size() == 0);
BEAST_EXPECT(!cst[~sf2]);
BEAST_EXPECT(cst[sf3].size() == 0);
std::vector<uint256> v;
v.emplace_back(1);
st[sf1] = v;
BEAST_EXPECT(cst[sf1].size() == 1);
BEAST_EXPECT(cst[sf1][0] == uint256{1});
st[sf2] = v;
BEAST_EXPECT(cst[sf2].size() == 1);
BEAST_EXPECT(cst[sf2][0] == uint256{1});
st[~sf2] = std::nullopt;
BEAST_EXPECT(!st[~sf2]);
st[sf3] = v;
BEAST_EXPECT(cst[sf3].size() == 1);
BEAST_EXPECT(cst[sf3][0] == uint256{1});
st[sf3] = std::vector<uint256>{};
BEAST_EXPECT(cst[sf3].size() == 0);
}
} // namespace ripple
void
testMalformed()
{
testcase("Malformed serialized forms");
try
{
std::array<std::uint8_t, 7> const payload{
{0xe9, 0x12, 0xab, 0xcd, 0x12, 0xfe, 0xdc}};
SerialIter sit{makeSlice(payload)};
auto obj = std::make_shared<STArray>(sit, sfMetadata);
BEAST_EXPECT(!obj);
}
catch (std::exception const& e)
{
BEAST_EXPECT(strcmp(e.what(), "Duplicate field detected") == 0);
}
try
{
std::array<std::uint8_t, 3> const payload{{0xe2, 0xe1, 0xe2}};
SerialIter sit{makeSlice(payload)};
auto obj = std::make_shared<STObject>(sit, sfMetadata);
BEAST_EXPECT(!obj);
}
catch (std::exception const& e)
{
BEAST_EXPECT(strcmp(e.what(), "Duplicate field detected") == 0);
}
}
void
run() override
{
// Instantiate a jtx::Env so debugLog writes are exercised.
test::jtx::Env env(*this);
testFields();
testSerialization();
testParseJSONArray();
testParseJSONArrayWithInvalidChildrenObjects();
testParseJSONEdgeCases();
testMalformed();
}
}
;
BEAST_DEFINE_TESTSUITE(STObject, protocol, ripple);
} // ripple