Files
rippled/src/ripple/consensus/Validations.h
Brad Chase bd2a38f584 Improve preferred ledger calculation:
This changeset ensures the preferred ledger calculation
properly distinguishes the absence of trusted validations
from a preferred ledger which is the genesis ledger.
2018-11-29 21:38:12 -08:00

973 lines
31 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012-2017 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_CONSENSUS_VALIDATIONS_H_INCLUDED
#define RIPPLE_CONSENSUS_VALIDATIONS_H_INCLUDED
#include <ripple/basics/Log.h>
#include <ripple/basics/UnorderedContainers.h>
#include <ripple/basics/chrono.h>
#include <ripple/beast/container/aged_container_utility.h>
#include <ripple/beast/container/aged_unordered_map.h>
#include <ripple/consensus/LedgerTrie.h>
#include <boost/optional.hpp>
#include <mutex>
#include <utility>
#include <vector>
namespace ripple {
/** Timing parameters to control validation staleness and expiration.
@note These are protocol level parameters that should not be changed without
careful consideration. They are *not* implemented as static constexpr
to allow simulation code to test alternate parameter settings.
*/
struct ValidationParms
{
explicit ValidationParms() = default;
/** The number of seconds a validation remains current after its ledger's
close time.
This is a safety to protect against very old validations and the time
it takes to adjust the close time accuracy window.
*/
std::chrono::seconds validationCURRENT_WALL = std::chrono::minutes{5};
/** Duration a validation remains current after first observed.
The number of seconds a validation remains current after the time we
first saw it. This provides faster recovery in very rare cases where the
number of validations produced by the network is lower than normal
*/
std::chrono::seconds validationCURRENT_LOCAL = std::chrono::minutes{3};
/** Duration pre-close in which validations are acceptable.
The number of seconds before a close time that we consider a validation
acceptable. This protects against extreme clock errors
*/
std::chrono::seconds validationCURRENT_EARLY = std::chrono::minutes{3};
/** Duration a set of validations for a given ledger hash remain valid
The number of seconds before a set of validations for a given ledger
hash can expire. This keeps validations for recent ledgers available
for a reasonable interval.
*/
std::chrono::seconds validationSET_EXPIRES = std::chrono::minutes{10};
};
/** Enforce validation increasing sequence requirement.
Helper class for enforcing that a validation must be larger than all
unexpired validation sequence numbers previously issued by the validator
tracked by the instance of this class.
*/
template <class Seq>
class SeqEnforcer
{
using time_point = std::chrono::steady_clock::time_point;
Seq seq_{0};
time_point when_;
public:
/** Try advancing the largest observed validation ledger sequence
Try setting the largest validation sequence observed, but return false
if it violates the invariant that a validation must be larger than all
unexpired validation sequence numbers.
@param now The current time
@param s The sequence number we want to validate
@param p Validation parameters
@return Whether the validation satisfies the invariant
*/
bool
operator()(time_point now, Seq s, ValidationParms const& p)
{
if (now > (when_ + p.validationSET_EXPIRES))
seq_ = Seq{0};
if (s <= seq_)
return false;
seq_ = s;
when_ = now;
return true;
}
Seq
largest() const
{
return seq_;
}
};
/** Whether a validation is still current
Determines whether a validation can still be considered the current
validation from a node based on when it was signed by that node and first
seen by this node.
@param p ValidationParms with timing parameters
@param now Current time
@param signTime When the validation was signed
@param seenTime When the validation was first seen locally
*/
inline bool
isCurrent(
ValidationParms const& p,
NetClock::time_point now,
NetClock::time_point signTime,
NetClock::time_point seenTime)
{
// Because this can be called on untrusted, possibly
// malicious validations, we do our math in a way
// that avoids any chance of overflowing or underflowing
// the signing time.
return (signTime > (now - p.validationCURRENT_EARLY)) &&
(signTime < (now + p.validationCURRENT_WALL)) &&
((seenTime == NetClock::time_point{}) ||
(seenTime < (now + p.validationCURRENT_LOCAL)));
}
/** Status of newly received validation
*/
enum class ValStatus {
/// This was a new validation and was added
current,
/// Not current or was older than current from this node
stale,
/// A validation violates the increasing seq requirement
badSeq
};
inline std::string
to_string(ValStatus m)
{
switch (m)
{
case ValStatus::current:
return "current";
case ValStatus::stale:
return "stale";
case ValStatus::badSeq:
return "badSeq";
default:
return "unknown";
}
}
/** Maintains current and recent ledger validations.
Manages storage and queries related to validations received on the network.
Stores the most current validation from nodes and sets of recent
validations grouped by ledger identifier.
Stored validations are not necessarily from trusted nodes, so clients
and implementations should take care to use `trusted` member functions or
check the validation's trusted status.
This class uses a generic interface to allow adapting Validations for
specific applications. The Adaptor template implements a set of helper
functions and type definitions. The code stubs below outline the
interface and type requirements.
@warning The Adaptor::MutexType is used to manage concurrent access to
private members of Validations but does not manage any data in the
Adaptor instance itself.
@code
// Conforms to the Ledger type requirements of LedgerTrie
struct Ledger;
struct Validation
{
using NodeID = ...;
using NodeKey = ...;
// Ledger ID associated with this validation
Ledger::ID ledgerID() const;
// Sequence number of validation's ledger (0 means no sequence number)
Ledger::Seq seq() const
// When the validation was signed
NetClock::time_point signTime() const;
// When the validation was first observed by this node
NetClock::time_point seenTime() const;
// Signing key of node that published the validation
NodeKey key() const;
// Whether the publishing node was trusted at the time the validation
// arrived
bool trusted() const;
// Set the validation as trusted
void setTrusted();
// Set the validation as untrusted
void setUntrusted();
// Whether this is a full or partial validation
bool full() const;
// Identifier for this node that remains fixed even when rotating
// signing keys
NodeID nodeID() const;
implementation_specific_t
unwrap() -> return the implementation-specific type being wrapped
// ... implementation specific
};
class Adaptor
{
using Mutex = std::mutex;
using Validation = Validation;
using Ledger = Ledger;
// Handle a newly stale validation, this should do minimal work since
// it is called by Validations while it may be iterating Validations
// under lock
void onStale(Validation && );
// Flush the remaining validations (typically done on shutdown)
void flush(hash_map<NodeID,Validation> && remaining);
// Return the current network time (used to determine staleness)
NetClock::time_point now() const;
// Attempt to acquire a specific ledger.
boost::optional<Ledger> acquire(Ledger::ID const & ledgerID);
// ... implementation specific
};
@endcode
@tparam Adaptor Provides type definitions and callbacks
*/
template <class Adaptor>
class Validations
{
using Mutex = typename Adaptor::Mutex;
using Validation = typename Adaptor::Validation;
using Ledger = typename Adaptor::Ledger;
using ID = typename Ledger::ID;
using Seq = typename Ledger::Seq;
using NodeID = typename Validation::NodeID;
using WrappedValidationType = std::decay_t<
std::result_of_t<decltype (&Validation::unwrap)(Validation)>>;
using ScopedLock = std::lock_guard<Mutex>;
// Manages concurrent access to members
mutable Mutex mutex_;
// Validations from currently listed and trusted nodes (partial and full)
hash_map<NodeID, Validation> current_;
// Used to enforce the largest validation invariant for the local node
SeqEnforcer<Seq> localSeqEnforcer_;
// Sequence of the largest validation received from each node
hash_map<NodeID, SeqEnforcer<Seq>> seqEnforcers_;
//! Validations from listed nodes, indexed by ledger id (partial and full)
beast::aged_unordered_map<
ID,
hash_map<NodeID, Validation>,
std::chrono::steady_clock,
beast::uhash<>>
byLedger_;
// Represents the ancestry of validated ledgers
LedgerTrie<Ledger> trie_;
// Last (validated) ledger successfully acquired. If in this map, it is
// accounted for in the trie.
hash_map<NodeID, Ledger> lastLedger_;
// Set of ledgers being acquired from the network
hash_map<std::pair<Seq, ID>, hash_set<NodeID>> acquiring_;
// Parameters to determine validation staleness
ValidationParms const parms_;
// Adaptor instance
// Is NOT managed by the mutex_ above
Adaptor adaptor_;
private:
// Remove support of a validated ledger
void
removeTrie(ScopedLock const&, NodeID const& nodeID, Validation const& val)
{
{
auto it =
acquiring_.find(std::make_pair(val.seq(), val.ledgerID()));
if (it != acquiring_.end())
{
it->second.erase(nodeID);
if (it->second.empty())
acquiring_.erase(it);
}
}
{
auto it = lastLedger_.find(nodeID);
if (it != lastLedger_.end() && it->second.id() == val.ledgerID())
{
trie_.remove(it->second);
lastLedger_.erase(nodeID);
}
}
}
// Check if any pending acquire ledger requests are complete
void
checkAcquired(ScopedLock const& lock)
{
for (auto it = acquiring_.begin(); it != acquiring_.end();)
{
if (boost::optional<Ledger> ledger =
adaptor_.acquire(it->first.second))
{
for (NodeID const& nodeID : it->second)
updateTrie(lock, nodeID, *ledger);
it = acquiring_.erase(it);
}
else
++it;
}
}
// Update the trie to reflect a new validated ledger
void
updateTrie(ScopedLock const&, NodeID const& nodeID, Ledger ledger)
{
auto ins = lastLedger_.emplace(nodeID, ledger);
if (!ins.second)
{
trie_.remove(ins.first->second);
ins.first->second = ledger;
}
trie_.insert(ledger);
}
/** Process a new validation
Process a new trusted validation from a validator. This will be
reflected only after the validated ledger is successfully acquired by
the local node. In the interim, the prior validated ledger from this
node remains.
@param lock Existing lock of mutex_
@param nodeID The node identifier of the validating node
@param val The trusted validation issued by the node
@param prior If not none, the last current validated ledger Seq,ID of
key
*/
void
updateTrie(
ScopedLock const& lock,
NodeID const& nodeID,
Validation const& val,
boost::optional<std::pair<Seq, ID>> prior)
{
assert(val.trusted());
// Clear any prior acquiring ledger for this node
if (prior)
{
auto it = acquiring_.find(*prior);
if (it != acquiring_.end())
{
it->second.erase(nodeID);
if (it->second.empty())
acquiring_.erase(it);
}
}
checkAcquired(lock);
std::pair<Seq, ID> valPair{val.seq(), val.ledgerID()};
auto it = acquiring_.find(valPair);
if (it != acquiring_.end())
{
it->second.insert(nodeID);
}
else
{
if (boost::optional<Ledger> ledger =
adaptor_.acquire(val.ledgerID()))
updateTrie(lock, nodeID, *ledger);
else
acquiring_[valPair].insert(nodeID);
}
}
/** Use the trie for a calculation
Accessing the trie through this helper ensures acquiring validations
are checked and any stale validations are flushed from the trie.
@param lock Existing lock of mutex_
@param f Invokable with signature (LedgerTrie<Ledger> &)
@warning The invokable `f` is expected to be a simple transformation of
its arguments and will be called with mutex_ under lock.
*/
template <class F>
auto
withTrie(ScopedLock const& lock, F&& f)
{
// Call current to flush any stale validations
current(lock, [](auto) {}, [](auto, auto) {});
checkAcquired(lock);
return f(trie_);
}
/** Iterate current validations.
Iterate current validations, flushing any which are stale.
@param lock Existing lock of mutex_
@param pre Invokable with signature (std::size_t) called prior to
looping.
@param f Invokable with signature (NodeID const &, Validations const &)
for each current validation.
@note The invokable `pre` is called _prior_ to checking for staleness
and reflects an upper-bound on the number of calls to `f.
@warning The invokable `f` is expected to be a simple transformation of
its arguments and will be called with mutex_ under lock.
*/
template <class Pre, class F>
void
current(ScopedLock const& lock, Pre&& pre, F&& f)
{
NetClock::time_point t = adaptor_.now();
pre(current_.size());
auto it = current_.begin();
while (it != current_.end())
{
// Check for staleness
if (!isCurrent(
parms_, t, it->second.signTime(), it->second.seenTime()))
{
removeTrie(lock, it->first, it->second);
adaptor_.onStale(std::move(it->second));
it = current_.erase(it);
}
else
{
auto cit = typename decltype(current_)::const_iterator{it};
// contains a live record
f(cit->first, cit->second);
++it;
}
}
}
/** Iterate the set of validations associated with a given ledger id
@param lock Existing lock on mutex_
@param ledgerID The identifier of the ledger
@param pre Invokable with signature(std::size_t)
@param f Invokable with signature (NodeID const &, Validation const &)
@note The invokable `pre` is called prior to iterating validations. The
argument is the number of times `f` will be called.
@warning The invokable f is expected to be a simple transformation of
its arguments and will be called with mutex_ under lock.
*/
template <class Pre, class F>
void
byLedger(ScopedLock const&, ID const& ledgerID, Pre&& pre, F&& f)
{
auto it = byLedger_.find(ledgerID);
if (it != byLedger_.end())
{
// Update set time since it is being used
byLedger_.touch(it);
pre(it->second.size());
for (auto const& keyVal : it->second)
f(keyVal.first, keyVal.second);
}
}
public:
/** Constructor
@param p ValidationParms to control staleness/expiration of validations
@param c Clock to use for expiring validations stored by ledger
@param ts Parameters for constructing Adaptor instance
*/
template <class... Ts>
Validations(
ValidationParms const& p,
beast::abstract_clock<std::chrono::steady_clock>& c,
Ts&&... ts)
: byLedger_(c), parms_(p), adaptor_(std::forward<Ts>(ts)...)
{
}
/** Return the adaptor instance
*/
Adaptor const&
adaptor() const
{
return adaptor_;
}
/** Return the validation timing parameters
*/
ValidationParms const&
parms() const
{
return parms_;
}
/** Return whether the local node can issue a validation for the given
sequence number
@param s The sequence number of the ledger the node wants to validate
@return Whether the validation satisfies the invariant, updating the
largest sequence number seen accordingly
*/
bool
canValidateSeq(Seq const s)
{
ScopedLock lock{mutex_};
return localSeqEnforcer_(byLedger_.clock().now(), s, parms_);
}
/** Add a new validation
Attempt to add a new validation.
@param nodeID The identity of the node issuing this validation
@param val The validation to store
@return The outcome
*/
ValStatus
add(NodeID const& nodeID, Validation const& val)
{
if (!isCurrent(parms_, adaptor_.now(), val.signTime(), val.seenTime()))
return ValStatus::stale;
{
ScopedLock lock{mutex_};
// Check that validation sequence is greater than any non-expired
// validations sequence from that validator
auto const now = byLedger_.clock().now();
SeqEnforcer<Seq>& enforcer = seqEnforcers_[nodeID];
if (!enforcer(now, val.seq(), parms_))
return ValStatus::badSeq;
// Use insert_or_assign when C++17 supported
auto byLedgerIt = byLedger_[val.ledgerID()].emplace(nodeID, val);
if (!byLedgerIt.second)
byLedgerIt.first->second = val;
auto const ins = current_.emplace(nodeID, val);
if (!ins.second)
{
// Replace existing only if this one is newer
Validation& oldVal = ins.first->second;
if (val.signTime() > oldVal.signTime())
{
std::pair<Seq, ID> old(oldVal.seq(), oldVal.ledgerID());
adaptor_.onStale(std::move(oldVal));
ins.first->second = val;
if (val.trusted())
updateTrie(lock, nodeID, val, old);
}
else
return ValStatus::stale;
}
else if (val.trusted())
{
updateTrie(lock, nodeID, val, boost::none);
}
}
return ValStatus::current;
}
/** Expire old validation sets
Remove validation sets that were accessed more than
validationSET_EXPIRES ago.
*/
void
expire()
{
ScopedLock lock{mutex_};
beast::expire(byLedger_, parms_.validationSET_EXPIRES);
}
/** Update trust status of validations
Updates the trusted status of known validations to account for nodes
that have been added or removed from the UNL. This also updates the trie
to ensure only currently trusted nodes' validations are used.
@param added Identifiers of nodes that are now trusted
@param removed Identifiers of nodes that are no longer trusted
*/
void
trustChanged(hash_set<NodeID> const& added, hash_set<NodeID> const& removed)
{
ScopedLock lock{mutex_};
for (auto& it : current_)
{
if (added.find(it.first) != added.end())
{
it.second.setTrusted();
updateTrie(lock, it.first, it.second, boost::none);
}
else if (removed.find(it.first) != removed.end())
{
it.second.setUntrusted();
removeTrie(lock, it.first, it.second);
}
}
for (auto& it : byLedger_)
{
for (auto& nodeVal : it.second)
{
if (added.find(nodeVal.first) != added.end())
{
nodeVal.second.setTrusted();
}
else if (removed.find(nodeVal.first) != removed.end())
{
nodeVal.second.setUntrusted();
}
}
}
}
Json::Value
getJsonTrie() const
{
ScopedLock lock{mutex_};
return trie_.getJson();
}
/** Return the sequence number and ID of the preferred working ledger
A ledger is preferred if it has more support amongst trusted validators
and is *not* an ancestor of the current working ledger; otherwise it
remains the current working ledger.
@param curr The local node's current working ledger
@return The sequence and id of the preferred working ledger,
or boost::none if no trusted validations are available to
determine the preferred ledger.
*/
boost::optional<std::pair<Seq, ID>>
getPreferred(Ledger const& curr)
{
ScopedLock lock{mutex_};
boost::optional<SpanTip<Ledger>> preferred =
withTrie(lock, [this](LedgerTrie<Ledger>& trie) {
return trie.getPreferred(localSeqEnforcer_.largest());
});
// No trusted validations to determine branch
if (!preferred)
{
// fall back to majority over acquiring ledgers
auto it = std::max_element(
acquiring_.begin(),
acquiring_.end(),
[](auto const& a, auto const& b) {
std::pair<Seq, ID> const& aKey = a.first;
typename hash_set<NodeID>::size_type const& aSize =
a.second.size();
std::pair<Seq, ID> const& bKey = b.first;
typename hash_set<NodeID>::size_type const& bSize =
b.second.size();
// order by number of trusted peers validating that ledger
// break ties with ledger ID
return std::tie(aSize, aKey.second) <
std::tie(bSize, bKey.second);
});
if (it != acquiring_.end())
return it->first;
return boost::none;
}
// If we are the parent of the preferred ledger, stick with our
// current ledger since we might be about to generate it
if (preferred->seq == curr.seq() + Seq{1} &&
preferred->ancestor(curr.seq()) == curr.id())
return std::make_pair(curr.seq(), curr.id());
// A ledger ahead of us is preferred regardless of whether it is
// a descendant of our working ledger or it is on a different chain
if (preferred->seq > curr.seq())
return std::make_pair(preferred->seq, preferred->id);
// Only switch to earlier or same sequence number
// if it is a different chain.
if (curr[preferred->seq] != preferred->id)
return std::make_pair(preferred->seq, preferred->id);
// Stick with current ledger
return std::make_pair(curr.seq(), curr.id());
}
/** Get the ID of the preferred working ledger that exceeds a minimum valid
ledger sequence number
@param curr Current working ledger
@param minValidSeq Minimum allowed sequence number
@return ID Of the preferred ledger, or curr if the preferred ledger
is not valid
*/
ID
getPreferred(Ledger const& curr, Seq minValidSeq)
{
boost::optional<std::pair<Seq, ID>> preferred = getPreferred(curr);
if (preferred && preferred->first >= minValidSeq)
return preferred->second;
return curr.id();
}
/** Determine the preferred last closed ledger for the next consensus round.
Called before starting the next round of ledger consensus to determine
the preferred working ledger. Uses the dominant peerCount ledger if no
trusted validations are available.
@param lcl Last closed ledger by this node
@param minSeq Minimum allowed sequence number of the trusted preferred
ledger
@param peerCounts Map from ledger ids to count of peers with that as the
last closed ledger
@return The preferred last closed ledger ID
@note The minSeq does not apply to the peerCounts, since this function
does not know their sequence number
*/
ID
getPreferredLCL(
Ledger const& lcl,
Seq minSeq,
hash_map<ID, std::uint32_t> const& peerCounts)
{
boost::optional<std::pair<Seq, ID>> preferred = getPreferred(lcl);
// Trusted validations exist, but stick with local preferred ledger if
// preferred is in the past
if (preferred)
return (preferred->first >= minSeq) ? preferred->second : lcl.id();
// Otherwise, rely on peer ledgers
auto it = std::max_element(
peerCounts.begin(), peerCounts.end(), [](auto& a, auto& b) {
// Prefer larger counts, then larger ids on ties
// (max_element expects this to return true if a < b)
return std::tie(a.second, a.first) <
std::tie(b.second, b.first);
});
if (it != peerCounts.end())
return it->first;
return lcl.id();
}
/** Count the number of current trusted validators working on a ledger
after the specified one.
@param ledger The working ledger
@param ledgerID The preferred ledger
@return The number of current trusted validators working on a descendant
of the preferred ledger
@note If ledger.id() != ledgerID, only counts immediate child ledgers of
ledgerID
*/
std::size_t
getNodesAfter(Ledger const& ledger, ID const& ledgerID)
{
ScopedLock lock{mutex_};
// Use trie if ledger is the right one
if (ledger.id() == ledgerID)
return withTrie(lock, [&ledger](LedgerTrie<Ledger>& trie) {
return trie.branchSupport(ledger) - trie.tipSupport(ledger);
});
// Count parent ledgers as fallback
return std::count_if(
lastLedger_.begin(),
lastLedger_.end(),
[&ledgerID](auto const& it) {
auto const& curr = it.second;
return curr.seq() > Seq{0} &&
curr[curr.seq() - Seq{1}] == ledgerID;
});
}
/** Get the currently trusted full validations
@return Vector of validations from currently trusted validators
*/
std::vector<WrappedValidationType>
currentTrusted()
{
std::vector<WrappedValidationType> ret;
ScopedLock lock{mutex_};
current(
lock,
[&](std::size_t numValidations) { ret.reserve(numValidations); },
[&](NodeID const&, Validation const& v) {
if (v.trusted() && v.full())
ret.push_back(v.unwrap());
});
return ret;
}
/** Get the set of node ids associated with current validations
@return The set of node ids for active, listed validators
*/
auto
getCurrentNodeIDs() -> hash_set<NodeID>
{
hash_set<NodeID> ret;
ScopedLock lock{mutex_};
current(
lock,
[&](std::size_t numValidations) { ret.reserve(numValidations); },
[&](NodeID const& nid, Validation const&) { ret.insert(nid); });
return ret;
}
/** Count the number of trusted full validations for the given ledger
@param ledgerID The identifier of ledger of interest
@return The number of trusted validations
*/
std::size_t
numTrustedForLedger(ID const& ledgerID)
{
std::size_t count = 0;
ScopedLock lock{mutex_};
byLedger(
lock,
ledgerID,
[&](std::size_t) {}, // nothing to reserve
[&](NodeID const&, Validation const& v) {
if (v.trusted() && v.full())
++count;
});
return count;
}
/** Get trusted full validations for a specific ledger
@param ledgerID The identifier of ledger of interest
@return Trusted validations associated with ledger
*/
std::vector<WrappedValidationType>
getTrustedForLedger(ID const& ledgerID)
{
std::vector<WrappedValidationType> res;
ScopedLock lock{mutex_};
byLedger(
lock,
ledgerID,
[&](std::size_t numValidations) { res.reserve(numValidations); },
[&](NodeID const&, Validation const& v) {
if (v.trusted() && v.full())
res.emplace_back(v.unwrap());
});
return res;
}
/** Returns fees reported by trusted full validators in the given ledger
@param ledgerID The identifier of ledger of interest
@param baseFee The fee to report if not present in the validation
@return Vector of fees
*/
std::vector<std::uint32_t>
fees(ID const& ledgerID, std::uint32_t baseFee)
{
std::vector<std::uint32_t> res;
ScopedLock lock{mutex_};
byLedger(
lock,
ledgerID,
[&](std::size_t numValidations) { res.reserve(numValidations); },
[&](NodeID const&, Validation const& v) {
if (v.trusted() && v.full())
{
boost::optional<std::uint32_t> loadFee = v.loadFee();
if (loadFee)
res.push_back(*loadFee);
else
res.push_back(baseFee);
}
});
return res;
}
/** Flush all current validations
*/
void
flush()
{
hash_map<NodeID, Validation> flushed;
{
ScopedLock lock{mutex_};
for (auto it : current_)
{
flushed.emplace(it.first, std::move(it.second));
}
current_.clear();
}
adaptor_.flush(std::move(flushed));
}
};
} // namespace ripple
#endif