Files
rippled/src/ripple/module/app/shamap/SHAMapSync.cpp

934 lines
28 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <ripple/nodestore/Database.h>
#include <beast/unit_test/suite.h>
namespace ripple {
// VFALCO TODO tidy up this global
static const uint256 uZero;
void SHAMap::visitLeaves (std::function<void (SHAMapItem::ref item)> function)
{
// Make a snapshot of this map so we don't need to hold
// a lock on the map we're visiting
snapShot (false)->visitLeavesInternal (function);
}
void SHAMap::visitLeavesInternal (std::function<void (SHAMapItem::ref item)>& function)
{
assert (root->isValid ());
if (!root || root->isEmpty ())
return;
if (!root->isInner ())
{
function (root->peekItem ());
return;
}
typedef std::pair<int, SHAMapTreeNode*> posPair;
std::stack<posPair> stack;
SHAMapTreeNode* node = root.get ();
int pos = 0;
while (1)
{
while (pos < 16)
{
if (node->isEmptyBranch (pos))
{
++pos; // move to next position
}
else
{
SHAMapTreeNode* child = getNodePointer (node->getID().getChildNodeID (pos),
node->getChildHash (pos));
if (child->isLeaf ())
{
function (child->peekItem ());
mTNByID.erase (child->getID()); // don't need this leaf anymore
++pos;
}
else
{
// If there are no more children, don't push this node
while ((pos != 15) && (node->isEmptyBranch (pos + 1)))
++pos;
if (pos != 15)
stack.push (posPair (pos + 1, node)); // save next position to resume at
else
mTNByID.erase (node->getID()); // don't need this inner node anymore
// descend to the child's first position
node = child;
pos = 0;
}
}
}
// We are done with this inner node
mTNByID.erase (node->getID());
if (stack.empty ())
break;
pos = stack.top ().first;
node = stack.top ().second;
stack.pop ();
}
}
class GMNEntry
{
public:
GMNEntry (SHAMapTreeNode* n, int fc, int cc, bool fb)
: node(n), firstChild (fc), currentChild (cc), fullBelow (fb)
{ ; }
SHAMapTreeNode* node;
int firstChild;
int currentChild;
bool fullBelow;
};
/** Get a list of node IDs and hashes for nodes that are part of this SHAMap but not available locally.
The filter can hold alternate sources of nodes that are not permanently stored locally
*/
void SHAMap::getMissingNodes (std::vector<SHAMapNodeID>& nodeIDs, std::vector<uint256>& hashes, int max,
SHAMapSyncFilter* filter)
{
ScopedReadLockType sl (mLock);
assert (root->isValid ());
assert (root->getNodeHash().isNonZero ());
if (root->isFullBelow ())
{
clearSynching ();
return;
}
if (!root->isInner ())
{
WriteLog (lsWARNING, SHAMap) << "synching empty tree";
return;
}
int const maxDefer = getApp().getNodeStore().getDesiredAsyncReadCount ();
// Track the missing hashes we have found so far
std::set <uint256> missingHashes;
while (1)
{
std::vector <std::pair <SHAMapNodeID, uint256>> deferredReads;
deferredReads.reserve (maxDefer + 16);
std::stack <GMNEntry> stack;
// Traverse the map without blocking
SHAMapTreeNode *node = root.get ();
int firstChild = rand() % 256;
int currentChild = 0;
bool fullBelow = true;
do
{
while (currentChild < 16)
{
int branch = (firstChild + currentChild++) % 16;
if (!node->isEmptyBranch (branch))
{
uint256 const& childHash = node->getChildHash (branch);
if (! m_fullBelowCache.touch_if_exists (childHash))
{
SHAMapNodeID childID = node->getID().getChildNodeID (branch);
bool pending = false;
SHAMapTreeNode* d = getNodeAsync (childID, childHash, filter, pending);
if (!d)
{
if (!pending)
{ // node is not in the database
if (missingHashes.insert (childHash).second)
{
nodeIDs.push_back (childID);
hashes.push_back (childHash);
if (--max <= 0)
return;
}
}
else
{
// read is deferred
deferredReads.emplace_back (childID, childHash);
}
fullBelow = false; // This node is not known full below
}
else if (d->isInner () && !d->isFullBelow ())
{
stack.push (GMNEntry (node, firstChild, currentChild, fullBelow));
// Switch to processing the child node
node = d;
firstChild = rand() % 256;
currentChild = 0;
fullBelow = true;
}
}
}
}
// We are done with this inner node (and thus all of its children)
if (fullBelow)
{ // No partial node encountered below this node
node->setFullBelow ();
if (mType == smtSTATE)
m_fullBelowCache.insert (node->getNodeHash ());
}
if (stack.empty ())
node = nullptr; // Finished processing the last node, we are done
else
{ // Pick up where we left off (above this node)
GMNEntry& next = stack.top ();
node = next.node;
firstChild = next.firstChild;
currentChild = next.currentChild;
fullBelow = (fullBelow && next.fullBelow); // was and still is
stack.pop ();
}
}
while ((node != nullptr) && (deferredReads.size () <= maxDefer));
// If we didn't defer any reads, we're done
if (deferredReads.empty ())
break;
getApp().getNodeStore().waitReads();
// Process all deferred reads
for (auto const& node : deferredReads)
{
auto const& nodeID = node.first;
auto const& nodeHash = node.second;
SHAMapTreeNode* nodePtr = getNodePointerNT (nodeID, nodeHash, filter);
if (!nodePtr && missingHashes.insert (nodeHash).second)
{
nodeIDs.push_back (nodeID);
hashes.push_back (nodeHash);
if (--max <= 0)
return;
}
}
}
if (nodeIDs.empty ())
clearSynching ();
}
std::vector<uint256> SHAMap::getNeededHashes (int max, SHAMapSyncFilter* filter)
{
std::vector<uint256> nodeHashes;
nodeHashes.reserve(max);
std::vector<SHAMapNodeID> nodeIDs;
nodeIDs.reserve(max);
getMissingNodes(nodeIDs, nodeHashes, max, filter);
return nodeHashes;
}
bool SHAMap::getNodeFat (const SHAMapNodeID& wanted, std::vector<SHAMapNodeID>& nodeIDs,
std::list<Blob >& rawNodes, bool fatRoot, bool fatLeaves)
{
// Gets a node and some of its children
ScopedReadLockType sl (mLock);
SHAMapTreeNode* node = getNodePointer(wanted);
if (!node)
{
WriteLog (lsWARNING, SHAMap) << "peer requested node that is not in the map: " << wanted;
throw std::runtime_error ("Peer requested node not in map");
}
if (node->isInner () && node->isEmpty ())
{
WriteLog (lsWARNING, SHAMap) << "peer requests empty node";
return false;
}
int count;
bool skipNode = false;
do
{
if (skipNode)
skipNode = false;
else
{
Serializer s;
node->addRaw (s, snfWIRE);
nodeIDs.push_back(node->getID());
rawNodes.push_back (s.peekData ());
}
if ((!fatRoot && node->getID().isRoot ()) || node->isLeaf ()) // don't get a fat root, can't get a fat leaf
return true;
SHAMapTreeNode* nextNode = nullptr;
count = 0;
for (int i = 0; i < 16; ++i)
if (!node->isEmptyBranch (i))
{
nextNode = getNodePointer (node->getID().getChildNodeID (i),
node->getChildHash (i));
++count;
if (fatLeaves || nextNode->isInner ())
{
Serializer s;
nextNode->addRaw (s, snfWIRE);
nodeIDs.push_back (nextNode->getID());
rawNodes.push_back (s.peekData ());
skipNode = true; // Don't add this node again if we loop
}
}
node = nextNode;
// So long as there's exactly one inner node, we take it
} while ((count == 1) && node->isInner());
return true;
}
bool SHAMap::getRootNode (Serializer& s, SHANodeFormat format)
{
ScopedReadLockType sl (mLock);
root->addRaw (s, format);
return true;
}
SHAMapAddNode SHAMap::addRootNode (Blob const& rootNode, SHANodeFormat format,
SHAMapSyncFilter* filter)
{
ScopedWriteLockType sl (mLock);
// we already have a root node
if (root->getNodeHash ().isNonZero ())
{
WriteLog (lsTRACE, SHAMap) << "got root node, already have one";
return SHAMapAddNode::duplicate ();
}
assert (mSeq >= 1);
SHAMapTreeNode::pointer node =
std::make_shared<SHAMapTreeNode> (SHAMapNodeID (), rootNode, mSeq - 1, format, uZero, false);
if (!node)
return SHAMapAddNode::invalid ();
#ifdef BEAST_DEBUG
node->dump ();
#endif
root = node;
mTNByID.replace(root->getID(), root);
if (root->isLeaf())
clearSynching ();
if (filter)
{
Serializer s;
root->addRaw (s, snfPREFIX);
filter->gotNode (false, root->getID(), root->getNodeHash (), s.modData (), root->getType ());
}
return SHAMapAddNode::useful ();
}
SHAMapAddNode SHAMap::addRootNode (uint256 const& hash, Blob const& rootNode, SHANodeFormat format,
SHAMapSyncFilter* filter)
{
ScopedWriteLockType sl (mLock);
// we already have a root node
if (root->getNodeHash ().isNonZero ())
{
WriteLog (lsTRACE, SHAMap) << "got root node, already have one";
assert (root->getNodeHash () == hash);
return SHAMapAddNode::duplicate ();
}
assert (mSeq >= 1);
SHAMapTreeNode::pointer node =
std::make_shared<SHAMapTreeNode> (SHAMapNodeID (), rootNode, mSeq - 1, format, uZero, false);
if (!node || node->getNodeHash () != hash)
return SHAMapAddNode::invalid ();
root = node;
mTNByID.replace(root->getID(), root);
if (root->isLeaf())
clearSynching ();
if (filter)
{
Serializer s;
root->addRaw (s, snfPREFIX);
filter->gotNode (false, root->getID(), root->getNodeHash (), s.modData (),
root->getType ());
}
return SHAMapAddNode::useful ();
}
SHAMapAddNode SHAMap::addKnownNode (const SHAMapNodeID& node, Blob const& rawNode, SHAMapSyncFilter* filter)
{
ScopedWriteLockType sl (mLock);
// return value: true=okay, false=error
assert (!node.isRoot ());
if (!isSynching ())
{
WriteLog (lsTRACE, SHAMap) << "AddKnownNode while not synching";
return SHAMapAddNode::duplicate ();
}
if (checkCacheNode (node)) // Do we already have this node?
return SHAMapAddNode::duplicate ();
SHAMapTreeNode::pointer parent = checkCacheNode(node.getParentNodeID());
SHAMapTreeNode* iNode = parent ? parent.get() : root.get ();
while (!iNode->isLeaf () && !iNode->isFullBelow () &&
(iNode->getID().getDepth () < node.getDepth ()))
{
int branch = iNode->getID().selectBranch (node.getNodeID ());
assert (branch >= 0);
if (iNode->isEmptyBranch (branch))
{
WriteLog (lsWARNING, SHAMap) << "Add known node for empty branch" << node;
return SHAMapAddNode::invalid ();
}
if (m_fullBelowCache.touch_if_exists (iNode->getChildHash (branch)))
return SHAMapAddNode::duplicate ();
SHAMapTreeNode *nextNode = getNodePointerNT (iNode->getID().getChildNodeID (branch),
iNode->getChildHash (branch), filter);
if (!nextNode)
{
if (iNode->getID().getDepth () != (node.getDepth () - 1))
{
// Either this node is broken or we didn't request it (yet)
WriteLog (lsWARNING, SHAMap) << "unable to hook node " << node;
WriteLog (lsINFO, SHAMap) << " stuck at " << iNode->getID();
WriteLog (lsINFO, SHAMap) << "got depth=" << node.getDepth ()
<< ", walked to= " << iNode->getID().getDepth ();
return SHAMapAddNode::invalid ();
}
SHAMapTreeNode::pointer newNode =
std::make_shared<SHAMapTreeNode> (node, rawNode, 0, snfWIRE, uZero, false);
if (iNode->getChildHash (branch) != newNode->getNodeHash ())
{
WriteLog (lsWARNING, SHAMap) << "Corrupt node received";
return SHAMapAddNode::invalid ();
}
canonicalize (iNode->getChildHash (branch), newNode);
if (!iNode->isInBounds ())
{
// Map is provably invalid
mState = smsInvalid;
return SHAMapAddNode::useful ();
}
if (mTNByID.canonicalize(node, &newNode) && filter)
{
Serializer s;
newNode->addRaw (s, snfPREFIX);
filter->gotNode (false, node, iNode->getChildHash (branch), s.modData (), newNode->getType ());
}
return SHAMapAddNode::useful ();
}
iNode = nextNode;
}
WriteLog (lsTRACE, SHAMap) << "got node, already had it (late)";
return SHAMapAddNode::duplicate ();
}
bool SHAMap::deepCompare (SHAMap& other)
{
// Intended for debug/test only
std::stack<SHAMapTreeNode::pointer> stack;
ScopedReadLockType sl (mLock);
stack.push (root);
while (!stack.empty ())
{
SHAMapTreeNode::pointer node = stack.top ();
stack.pop ();
SHAMapTreeNode::pointer otherNode;
if (node->getID().isRoot ()) otherNode = other.root;
else otherNode = other.getNode (node->getID(), node->getNodeHash (), false);
if (!otherNode)
{
WriteLog (lsINFO, SHAMap) << "unable to fetch node";
return false;
}
else if (otherNode->getNodeHash () != node->getNodeHash ())
{
WriteLog (lsWARNING, SHAMap) << "node hash mismatch " << node->getID();
return false;
}
// WriteLog (lsTRACE) << "Comparing inner nodes " << *node;
if (node->getNodeHash () != otherNode->getNodeHash ())
return false;
if (node->isLeaf ())
{
if (!otherNode->isLeaf ()) return false;
if (node->peekItem ()->getTag () != otherNode->peekItem ()->getTag ()) return false;
if (node->peekItem ()->peekData () != otherNode->peekItem ()->peekData ()) return false;
}
else if (node->isInner ())
{
if (!otherNode->isInner ())
return false;
for (int i = 0; i < 16; ++i)
{
if (node->isEmptyBranch (i))
{
if (!otherNode->isEmptyBranch (i)) return false;
}
else
{
SHAMapTreeNode::pointer next = getNode (node->getID().getChildNodeID (i),
node->getChildHash (i), false);
if (!next)
{
WriteLog (lsWARNING, SHAMap) << "unable to fetch inner node";
return false;
}
stack.push (next);
}
}
}
}
return true;
}
/** Does this map have this inner node?
You must hold a read lock to call this function
*/
bool SHAMap::hasInnerNode (const SHAMapNodeID& nodeID, uint256 const& nodeHash)
{
SHAMapTreeNode::pointer ptr = mTNByID.retrieve (nodeID);
if (ptr)
return ptr->getNodeHash() == nodeHash;
SHAMapTreeNode* node = root.get ();
while (node->isInner () && (node->getID().getDepth () < nodeID.getDepth ()))
{
int branch = node->getID().selectBranch (nodeID.getNodeID ());
if (node->isEmptyBranch (branch))
return false;
node = getNodePointer (node->getID().getChildNodeID (branch),
node->getChildHash (branch));
}
return node->getNodeHash () == nodeHash;
}
/** Does this map have this leaf node?
You must hold a read lock to call this function
*/
bool SHAMap::hasLeafNode (uint256 const& tag, uint256 const& nodeHash)
{
SHAMapTreeNode* node = root.get ();
if (!node->isInner()) // only one leaf node in the tree
return node->getNodeHash() == nodeHash;
do
{
int branch = node->getID().selectBranch (tag);
if (node->isEmptyBranch (branch)) // Dead end, node must not be here
return false;
const uint256& nextHash = node->getChildHash (branch);
if (nextHash == nodeHash) // Matching leaf, no need to retrieve it
return true;
node = getNodePointer (node->getID().getChildNodeID (branch), nextHash);
}
while (node->isInner());
return false; // If this was a matching leaf, we would have caught it already
}
static void addFPtoList (std::list<SHAMap::fetchPackEntry_t>& list, const uint256& hash, const Blob& blob)
{
list.push_back (SHAMap::fetchPackEntry_t (hash, blob));
}
void SHAMap::getFetchPack (SHAMap* have, bool includeLeaves, int max,
std::function<void (const uint256&, const Blob&)> func)
{
ScopedReadLockType ul1 (mLock, boost::defer_lock);
ScopedReadLockType ul2;
if (have)
{
assert(this != have);
ul2 = ScopedReadLockType (have->mLock, boost::defer_lock);
std::lock(ul1, ul2);
}
else
ul1.lock();
if (root->getNodeHash ().isZero ())
return;
if (have && (root->getNodeHash () == have->root->getNodeHash ()))
return;
if (root->isLeaf ())
{
if (includeLeaves &&
(!have || !have->hasLeafNode (root->getTag (), root->getNodeHash ())))
{
Serializer s;
root->addRaw (s, snfPREFIX);
func (std::cref(root->getNodeHash ()), std::cref(s.peekData ()));
--max;
}
return;
}
std::stack<SHAMapTreeNode*> stack; // contains unexplored non-matching inner node entries
stack.push (root.get());
while (!stack.empty() && (max > 0))
{
SHAMapTreeNode* node = stack.top ();
stack.pop ();
// 1) Add this node to the pack
Serializer s;
node->addRaw (s, snfPREFIX);
func (std::cref(node->getNodeHash ()), std::cref(s.peekData ()));
--max;
// 2) push non-matching child inner nodes
for (int i = 0; i < 16; ++i)
{
if (!node->isEmptyBranch (i))
{
uint256 const& childHash = node->getChildHash (i);
SHAMapNodeID childID = node->getID().getChildNodeID (i);
SHAMapTreeNode* next = getNodePointer (childID, childHash);
if (next->isInner ())
{
if (!have || !have->hasInnerNode (next->getID(), childHash))
stack.push (next);
}
else if (includeLeaves && (!have || !have->hasLeafNode (next->getTag(), childHash)))
{
Serializer s;
next->addRaw (s, snfPREFIX);
func (std::cref(childHash), std::cref(s.peekData ()));
--max;
}
}
}
}
}
std::list<Blob > SHAMap::getTrustedPath (uint256 const& index)
{
ScopedReadLockType sl (mLock);
std::stack<SHAMapTreeNode::pointer> stack = SHAMap::getStack (index, false);
if (stack.empty () || !stack.top ()->isLeaf ())
throw std::runtime_error ("requested leaf not present");
std::list< Blob > path;
Serializer s;
while (!stack.empty ())
{
stack.top ()->addRaw (s, snfWIRE);
path.push_back (s.getData ());
s.erase ();
stack.pop ();
}
return path;
}
//------------------------------------------------------------------------------
#ifdef BEAST_DEBUG
//#define SMS_DEBUG
#endif
class SHAMapSync_test : public beast::unit_test::suite
{
public:
static SHAMapItem::pointer makeRandomAS ()
{
Serializer s;
for (int d = 0; d < 3; ++d) s.add32 (rand ());
return std::make_shared<SHAMapItem> (to256 (s.getRIPEMD160 ()), s.peekData ());
}
bool confuseMap (SHAMap& map, int count)
{
// add a bunch of random states to a map, then remove them
// map should be the same
uint256 beforeHash = map.getHash ();
std::list<uint256> items;
for (int i = 0; i < count; ++i)
{
SHAMapItem::pointer item = makeRandomAS ();
items.push_back (item->getTag ());
if (!map.addItem (*item, false, false))
{
log <<
"Unable to add item to map";
return false;
}
}
for (std::list<uint256>::iterator it = items.begin (); it != items.end (); ++it)
{
if (!map.delItem (*it))
{
log <<
"Unable to remove item from map";
return false;
}
}
if (beforeHash != map.getHash ())
{
log <<
"Hashes do not match";
return false;
}
return true;
}
void run ()
{
unsigned int seed;
// VFALCO TODO Replace this with beast::Random
RAND_pseudo_bytes (reinterpret_cast<unsigned char*> (&seed), sizeof (seed));
srand (seed);
beast::manual_clock <std::chrono::seconds> clock; // manual advance clock
beast::Journal const j; // debug journal
FullBelowCache fullBelowCache ("test.full_below", clock);
TreeNodeCache treeNodeCache ("test.tree_node_cache", 65536, 60, clock, j);
SHAMap source (smtFREE, fullBelowCache, treeNodeCache);
SHAMap destination (smtFREE, fullBelowCache, treeNodeCache);
int items = 10000;
for (int i = 0; i < items; ++i)
source.addItem (*makeRandomAS (), false, false);
unexpected (!confuseMap (source, 500), "ConfuseMap");
source.setImmutable ();
std::vector<SHAMapNodeID> nodeIDs, gotNodeIDs;
std::list< Blob > gotNodes;
std::vector<uint256> hashes;
std::vector<SHAMapNodeID>::iterator nodeIDIterator;
std::list< Blob >::iterator rawNodeIterator;
int passes = 0;
int nodes = 0;
destination.setSynching ();
unexpected (!source.getNodeFat (SHAMapNodeID (), nodeIDs, gotNodes, (rand () % 2) == 0, (rand () % 2) == 0),
"GetNodeFat");
unexpected (gotNodes.size () < 1, "NodeSize");
unexpected (!destination.addRootNode (*gotNodes.begin (), snfWIRE, nullptr).isGood(), "AddRootNode");
nodeIDs.clear ();
gotNodes.clear ();
#ifdef SMS_DEBUG
int bytes = 0;
#endif
do
{
++clock;
++passes;
hashes.clear ();
// get the list of nodes we know we need
destination.getMissingNodes (nodeIDs, hashes, 2048, nullptr);
if (nodeIDs.empty ()) break;
// get as many nodes as possible based on this information
for (nodeIDIterator = nodeIDs.begin (); nodeIDIterator != nodeIDs.end (); ++nodeIDIterator)
{
if (!source.getNodeFat (*nodeIDIterator, gotNodeIDs, gotNodes, (rand () % 2) == 0, (rand () % 2) == 0))
{
WriteLog (lsFATAL, SHAMap) << "GetNodeFat fails";
fail ("GetNodeFat");
}
else
{
pass ();
}
}
assert (gotNodeIDs.size () == gotNodes.size ());
nodeIDs.clear ();
hashes.clear ();
if (gotNodeIDs.empty ())
{
fail ("Got Node ID");
}
else
{
pass ();
}
for (nodeIDIterator = gotNodeIDs.begin (), rawNodeIterator = gotNodes.begin ();
nodeIDIterator != gotNodeIDs.end (); ++nodeIDIterator, ++rawNodeIterator)
{
++nodes;
#ifdef SMS_DEBUG
bytes += rawNodeIterator->size ();
#endif
if (!destination.addKnownNode (*nodeIDIterator, *rawNodeIterator, nullptr).isGood ())
{
WriteLog (lsTRACE, SHAMap) << "AddKnownNode fails";
fail ("AddKnownNode");
}
else
{
pass ();
}
}
gotNodeIDs.clear ();
gotNodes.clear ();
}
while (true);
destination.clearSynching ();
#ifdef SMS_DEBUG
WriteLog (lsINFO, SHAMap) << "SYNCHING COMPLETE " << items << " items, " << nodes << " nodes, " <<
bytes / 1024 << " KB";
#endif
if (!source.deepCompare (destination))
{
fail ("Deep Compare");
}
else
{
pass ();
}
#ifdef SMS_DEBUG
WriteLog (lsINFO, SHAMap) << "SHAMapSync test passed: " << items << " items, " <<
passes << " passes, " << nodes << " nodes";
#endif
}
};
BEAST_DEFINE_TESTSUITE(SHAMapSync,ripple_app,ripple);
} // ripple