Files
rippled/src/cpp/ripple/LedgerConsensus.cpp

1497 lines
44 KiB
C++

#include "LedgerConsensus.h"
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <boost/unordered_set.hpp>
#include <boost/foreach.hpp>
#include "../json/writer.h"
#include "Application.h"
#include "NetworkOPs.h"
#include "LedgerTiming.h"
#include "SerializedValidation.h"
#include "Log.h"
#include "SHAMapSync.h"
#define TX_ACQUIRE_TIMEOUT 250
#define LEDGER_TOTAL_PASSES 8
#define LEDGER_RETRY_PASSES 5
#define TRUST_NETWORK
#define LC_DEBUG
typedef std::map<uint160, LedgerProposal::pointer>::value_type u160_prop_pair;
typedef std::map<uint256, LCTransaction::pointer>::value_type u256_lct_pair;
SETUP_LOG();
DECLARE_INSTANCE(LedgerConsensus);
DECLARE_INSTANCE(TransactionAcquire);
TransactionAcquire::TransactionAcquire(const uint256& hash) : PeerSet(hash, TX_ACQUIRE_TIMEOUT), mHaveRoot(false)
{
mMap = boost::make_shared<SHAMap>(smtTRANSACTION, hash);
}
void TransactionAcquire::done()
{
if (mFailed)
{
cLog(lsWARNING) << "Failed to acquire TX set " << mHash;
theApp->getOPs().mapComplete(mHash, SHAMap::pointer());
}
else
{
cLog(lsINFO) << "Acquired TX set " << mHash;
mMap->setImmutable();
theApp->getOPs().mapComplete(mHash, mMap);
}
theApp->getMasterLedgerAcquire().dropLedger(mHash);
}
void TransactionAcquire::onTimer(bool progress)
{
if (!getPeerCount())
{ // out of peers
cLog(lsWARNING) << "Out of peers for TX set " << getHash();
bool found = false;
std::vector<Peer::pointer> peerList = theApp->getConnectionPool().getPeerVector();
BOOST_FOREACH(Peer::ref peer, peerList)
{
if (peer->hasTxSet(getHash()))
{
found = true;
peerHas(peer);
}
}
if (!found)
{
BOOST_FOREACH(Peer::ref peer, peerList)
peerHas(peer);
}
}
else if (!progress)
trigger(Peer::pointer());
}
boost::weak_ptr<PeerSet> TransactionAcquire::pmDowncast()
{
return boost::shared_polymorphic_downcast<PeerSet>(shared_from_this());
}
void TransactionAcquire::trigger(Peer::ref peer)
{
if (mComplete || mFailed)
{
cLog(lsINFO) << "complete or failed";
return;
}
if (!mHaveRoot)
{
cLog(lsTRACE) << "TransactionAcquire::trigger " << (peer ? "havePeer" : "noPeer") << " no root";
ripple::TMGetLedger tmGL;
tmGL.set_ledgerhash(mHash.begin(), mHash.size());
tmGL.set_itype(ripple::liTS_CANDIDATE);
if (getTimeouts() != 0)
tmGL.set_querytype(ripple::qtINDIRECT);
*(tmGL.add_nodeids()) = SHAMapNode().getRawString();
sendRequest(tmGL, peer);
}
else
{
std::vector<SHAMapNode> nodeIDs;
std::vector<uint256> nodeHashes;
ConsensusTransSetSF sf;
mMap->getMissingNodes(nodeIDs, nodeHashes, 256, &sf);
if (nodeIDs.empty())
{
if (mMap->isValid())
mComplete = true;
else
mFailed = true;
done();
return;
}
ripple::TMGetLedger tmGL;
tmGL.set_ledgerhash(mHash.begin(), mHash.size());
tmGL.set_itype(ripple::liTS_CANDIDATE);
if (getTimeouts() != 0)
tmGL.set_querytype(ripple::qtINDIRECT);
BOOST_FOREACH(SHAMapNode& it, nodeIDs)
*(tmGL.add_nodeids()) = it.getRawString();
sendRequest(tmGL, peer);
}
}
SMAddNode TransactionAcquire::takeNodes(const std::list<SHAMapNode>& nodeIDs,
const std::list< std::vector<unsigned char> >& data, Peer::ref peer)
{
if (mComplete)
{
cLog(lsTRACE) << "TX set complete";
return SMAddNode();
}
if (mFailed)
{
cLog(lsTRACE) << "TX set failed";
return SMAddNode();
}
try
{
if (nodeIDs.empty())
return SMAddNode::invalid();
std::list<SHAMapNode>::const_iterator nodeIDit = nodeIDs.begin();
std::list< std::vector<unsigned char> >::const_iterator nodeDatait = data.begin();
ConsensusTransSetSF sf;
while (nodeIDit != nodeIDs.end())
{
if (nodeIDit->isRoot())
{
if (mHaveRoot)
{
cLog(lsWARNING) << "Got root TXS node, already have it";
return SMAddNode();
}
if (!mMap->addRootNode(getHash(), *nodeDatait, snfWIRE, NULL))
{
cLog(lsWARNING) << "TX acquire got bad root node";
return SMAddNode::invalid();
}
else
mHaveRoot = true;
}
else if (!mMap->addKnownNode(*nodeIDit, *nodeDatait, &sf))
{
cLog(lsWARNING) << "TX acquire got bad non-root node";
return SMAddNode::invalid();
}
++nodeIDit;
++nodeDatait;
}
trigger(peer);
progress();
return SMAddNode::useful();
}
catch (...)
{
cLog(lsERROR) << "Peer sends us junky transaction node data";
return SMAddNode::invalid();
}
}
void LCTransaction::setVote(const uint160& peer, bool votesYes)
{ // Track a peer's yes/no vote on a particular disputed transaction
std::pair<boost::unordered_map<const uint160, bool>::iterator, bool> res =
mVotes.insert(std::pair<const uint160, bool>(peer, votesYes));
if (res.second)
{ // new vote
if (votesYes)
{
cLog(lsTRACE) << "Peer " << peer << " votes YES on " << mTransactionID;
++mYays;
}
else
{
cLog(lsTRACE) << "Peer " << peer << " votes NO on " << mTransactionID;
++mNays;
}
}
else if (votesYes && !res.first->second)
{ // changes vote to yes
cLog(lsDEBUG) << "Peer " << peer << " now votes YES on " << mTransactionID;
--mNays;
++mYays;
res.first->second = true;
}
else if (!votesYes && res.first->second)
{ // changes vote to no
cLog(lsDEBUG) << "Peer " << peer << " now votes NO on " << mTransactionID;
++mNays;
--mYays;
res.first->second = false;
}
}
void LCTransaction::unVote(const uint160& peer)
{ // Remove a peer's vote on this disputed transasction
boost::unordered_map<uint160, bool>::iterator it = mVotes.find(peer);
if (it != mVotes.end())
{
if (it->second)
--mYays;
else
--mNays;
mVotes.erase(it);
}
}
bool LCTransaction::updateVote(int percentTime, bool proposing)
{
if (mOurVote && (mNays == 0))
return false;
if (!mOurVote && (mYays == 0))
return false;
bool newPosition;
int weight;
if (proposing) // give ourselves full weight
{
// This is basically the percentage of nodes voting 'yes' (including us)
weight = (mYays * 100 + (mOurVote ? 100 : 0)) / (mNays + mYays + 1);
// To prevent avalanche stalls, we increase the needed weight slightly over time
if (percentTime < AV_MID_CONSENSUS_TIME) newPosition = weight > AV_INIT_CONSENSUS_PCT;
else if (percentTime < AV_LATE_CONSENSUS_TIME) newPosition = weight > AV_MID_CONSENSUS_PCT;
else newPosition = weight > AV_LATE_CONSENSUS_PCT;
}
else // don't let us outweigh a proposing node, just recognize consensus
{
weight = -1;
newPosition = mYays > mNays;
}
if (newPosition == mOurVote)
{
#ifdef LC_DEBUG
cLog(lsTRACE) << "No change (" << (mOurVote ? "YES" : "NO") << ") : weight "
<< weight << ", percent " << percentTime;
#endif
return false;
}
mOurVote = newPosition;
cLog(lsDEBUG) << "We now vote " << (mOurVote ? "YES" : "NO") << " on " << mTransactionID;
return true;
}
Json::Value LCTransaction::getJson()
{
Json::Value ret(Json::objectValue);
ret["yays"] = mYays;
ret["nays"] = mNays;
ret["our_vote"] = mOurVote;
if (!mVotes.empty())
{
Json::Value votesj(Json::objectValue);
typedef boost::unordered_map<uint160, bool>::value_type vt;
BOOST_FOREACH(vt& vote, mVotes)
{
votesj[vote.first.GetHex()] = vote.second;
}
ret["votes"] = votesj;
}
return ret;
}
LedgerConsensus::LedgerConsensus(const uint256& prevLCLHash, Ledger::ref previousLedger, uint32 closeTime)
: mState(lcsPRE_CLOSE), mCloseTime(closeTime), mPrevLedgerHash(prevLCLHash), mPreviousLedger(previousLedger),
mValPublic(theConfig.VALIDATION_PUB), mValPrivate(theConfig.VALIDATION_PRIV), mConsensusFail(false),
mCurrentMSeconds(0), mClosePercent(0), mHaveCloseTimeConsensus(false),
mConsensusStartTime(boost::posix_time::microsec_clock::universal_time())
{
cLog(lsDEBUG) << "Creating consensus object";
cLog(lsTRACE) << "LCL:" << previousLedger->getHash() <<", ct=" << closeTime;
mPreviousProposers = theApp->getOPs().getPreviousProposers();
mPreviousMSeconds = theApp->getOPs().getPreviousConvergeTime();
assert(mPreviousMSeconds);
mCloseResolution = ContinuousLedgerTiming::getNextLedgerTimeResolution(
mPreviousLedger->getCloseResolution(), mPreviousLedger->getCloseAgree(), previousLedger->getLedgerSeq() + 1);
if (mValPublic.isValid() && mValPrivate.isValid() && !theApp->getOPs().isNeedNetworkLedger())
{
cLog(lsINFO) << "Entering consensus process, validating";
mValidating = true;
mProposing = theApp->getOPs().getOperatingMode() == NetworkOPs::omFULL;
}
else
{
cLog(lsINFO) << "Entering consensus process, watching";
mProposing = mValidating = false;
}
mHaveCorrectLCL = (mPreviousLedger->getHash() == mPrevLedgerHash);
if (!mHaveCorrectLCL)
{
theApp->getOPs().setProposing(false, false);
handleLCL(mPrevLedgerHash);
if (!mHaveCorrectLCL)
{
// mProposing = mValidating = false;
cLog(lsINFO) << "Entering consensus with: " << previousLedger->getHash();
cLog(lsINFO) << "Correct LCL is: " << prevLCLHash;
}
}
else
theApp->getOPs().setProposing(mProposing, mValidating);
}
void LedgerConsensus::checkOurValidation()
{ // This only covers some cases - Fix for the case where we can't ever acquire the consensus ledger
if (!mHaveCorrectLCL || !mValPublic.isValid() || !mValPrivate.isValid() || theApp->getOPs().isNeedNetworkLedger())
return;
SerializedValidation::pointer lastVal = theApp->getOPs().getLastValidation();
if (lastVal)
{
if (lastVal->getFieldU32(sfLedgerSequence) == mPreviousLedger->getLedgerSeq())
return;
if (lastVal->getLedgerHash() == mPrevLedgerHash)
return;
}
uint256 signingHash;
SerializedValidation::pointer v = boost::make_shared<SerializedValidation>
(mPreviousLedger->getHash(), theApp->getOPs().getValidationTimeNC(), mValPublic, false);
v->setTrusted();
v->sign(signingHash, mValPrivate);
theApp->isNew(signingHash);
theApp->getValidations().addValidation(v);
std::vector<unsigned char> validation = v->getSigned();
ripple::TMValidation val;
val.set_validation(&validation[0], validation.size());
#if 0
theApp->getConnectionPool().relayMessage(NULL,
boost::make_shared<PackedMessage>(val, ripple::mtVALIDATION));
#endif
theApp->getOPs().setLastValidation(v);
cLog(lsWARNING) << "Sending partial validation";
}
void LedgerConsensus::checkLCL()
{
uint256 netLgr = mPrevLedgerHash;
int netLgrCount = 0;
uint256 favoredLedger = (mState == lcsPRE_CLOSE) ? uint256() : mPrevLedgerHash; // Don't get stuck one ledger back
boost::unordered_map<uint256, currentValidationCount> vals =
theApp->getValidations().getCurrentValidations(favoredLedger);
typedef std::map<uint256, currentValidationCount>::value_type u256_cvc_pair;
BOOST_FOREACH(u256_cvc_pair& it, vals)
if (it.second.first > netLgrCount)
{
netLgr = it.first;
netLgrCount = it.second.first;
}
if (netLgr != mPrevLedgerHash)
{ // LCL change
const char *status;
switch (mState)
{
case lcsPRE_CLOSE: status = "PreClose"; break;
case lcsESTABLISH: status = "Establish"; break;
case lcsFINISHED: status = "Finised"; break;
case lcsACCEPTED: status = "Accepted"; break;
default: status = "unknown";
}
cLog(lsWARNING) << "View of consensus changed during consensus (" << netLgrCount << ") status="
<< status << ", " << (mHaveCorrectLCL ? "CorrectLCL" : "IncorrectLCL");
cLog(lsWARNING) << mPrevLedgerHash << " to " << netLgr;
if (sLog(lsDEBUG))
{
BOOST_FOREACH(u256_cvc_pair& it, vals)
cLog(lsDEBUG) << "V: " << it.first << ", " << it.second.first;
}
if (mHaveCorrectLCL)
theApp->getOPs().consensusViewChange();
handleLCL(netLgr);
}
else if (mPreviousLedger->getHash() != mPrevLedgerHash)
handleLCL(netLgr);
}
void LedgerConsensus::handleLCL(const uint256& lclHash)
{
if (mPrevLedgerHash != lclHash)
{ // first time switching to this ledger
mPrevLedgerHash = lclHash;
if (mHaveCorrectLCL && mProposing && mOurPosition)
{
cLog(lsINFO) << "Bowing out of consensus";
mOurPosition->bowOut();
propose();
}
mProposing = false;
// mValidating = false;
mPeerPositions.clear();
mDisputes.clear();
mCloseTimes.clear();
mDeadNodes.clear();
playbackProposals();
}
if (mPreviousLedger->getHash() != mPrevLedgerHash)
{ // we need to switch the ledger we're working from
Ledger::pointer newLCL = theApp->getLedgerMaster().getLedgerByHash(lclHash);
if (newLCL)
mPreviousLedger = newLCL;
else if (!mAcquiringLedger || (mAcquiringLedger->getHash() != mPrevLedgerHash))
{ // need to start acquiring the correct consensus LCL
cLog(lsWARNING) << "Need consensus ledger " << mPrevLedgerHash;
mAcquiringLedger = theApp->getMasterLedgerAcquire().findCreate(mPrevLedgerHash);
mHaveCorrectLCL = false;
return;
}
}
cLog(lsINFO) << "Have the consensus ledger " << mPrevLedgerHash;
mHaveCorrectLCL = true;
#if 0 // FIXME: can trigger early
if (mAcquiringLedger && mAcquiringLedger->isComplete())
theApp->getOPs().clearNeedNetworkLedger();
#endif
mCloseResolution = ContinuousLedgerTiming::getNextLedgerTimeResolution(
mPreviousLedger->getCloseResolution(), mPreviousLedger->getCloseAgree(),
mPreviousLedger->getLedgerSeq() + 1);
}
void LedgerConsensus::takeInitialPosition(Ledger& initialLedger)
{
SHAMap::pointer initialSet = initialLedger.peekTransactionMap()->snapShot(false);
uint256 txSet = initialSet->getHash();
cLog(lsINFO) << "initial position " << txSet;
mapComplete(txSet, initialSet, false);
if (mValidating)
mOurPosition = boost::make_shared<LedgerProposal>
(mValPublic, mValPrivate, initialLedger.getParentHash(), txSet, mCloseTime);
else
mOurPosition = boost::make_shared<LedgerProposal>(initialLedger.getParentHash(), txSet, mCloseTime);
BOOST_FOREACH(u256_lct_pair& it, mDisputes)
{
it.second->setOurVote(initialLedger.hasTransaction(it.first));
}
// if any peers have taken a contrary position, process disputes
boost::unordered_set<uint256> found;
BOOST_FOREACH(u160_prop_pair& it, mPeerPositions)
{
uint256 set = it.second->getCurrentHash();
if (found.insert(set).second)
{
boost::unordered_map<uint256, SHAMap::pointer>::iterator iit = mAcquired.find(set);
if (iit != mAcquired.end())
createDisputes(initialSet, iit->second);
}
}
if (mProposing)
propose();
}
void LedgerConsensus::createDisputes(SHAMap::ref m1, SHAMap::ref m2)
{
SHAMap::SHAMapDiff differences;
m1->compare(m2, differences, 16384);
typedef std::map<uint256, SHAMap::SHAMapDiffItem>::value_type u256_diff_pair;
BOOST_FOREACH (u256_diff_pair& pos, differences)
{ // create disputed transactions (from the ledger that has them)
if (pos.second.first)
{ // transaction is in first map
assert(!pos.second.second);
addDisputedTransaction(pos.first, pos.second.first->peekData());
}
else if (pos.second.second)
{ // transaction is in second map
assert(!pos.second.first);
addDisputedTransaction(pos.first, pos.second.second->peekData());
}
else // No other disagreement over a transaction should be possible
assert(false);
}
}
void LedgerConsensus::mapComplete(const uint256& hash, SHAMap::ref map, bool acquired)
{
tLog(acquired, lsINFO) << "We have acquired TXS " << hash;
if (!map)
{ // this is an invalid/corrupt map
mAcquired[hash] = map;
mAcquiring.erase(hash);
cLog(lsWARNING) << "A trusted node directed us to acquire an invalid TXN map";
return;
}
assert(hash == map->getHash());
if (mAcquired.find(hash) != mAcquired.end())
{
mAcquiring.erase(hash);
return; // we already have this map
}
if (mOurPosition && (!mOurPosition->isBowOut()) && (hash != mOurPosition->getCurrentHash()))
{ // this could create disputed transactions
boost::unordered_map<uint256, SHAMap::pointer>::iterator it2 = mAcquired.find(mOurPosition->getCurrentHash());
if (it2 != mAcquired.end())
{
assert((it2->first == mOurPosition->getCurrentHash()) && it2->second);
createDisputes(it2->second, map);
}
else
assert(false); // We don't have our own position?!
}
mAcquired[hash] = map;
mAcquiring.erase(hash);
// Adjust tracking for each peer that takes this position
std::vector<uint160> peers;
BOOST_FOREACH(u160_prop_pair& it, mPeerPositions)
{
if (it.second->getCurrentHash() == map->getHash())
peers.push_back(it.second->getPeerID());
}
if (!peers.empty())
adjustCount(map, peers);
else tLog(acquired, lsWARNING) << "By the time we got the map " << hash << " no peers were proposing it";
sendHaveTxSet(hash, true);
}
void LedgerConsensus::sendHaveTxSet(const uint256& hash, bool direct)
{
ripple::TMHaveTransactionSet msg;
msg.set_hash(hash.begin(), 256 / 8);
msg.set_status(direct ? ripple::tsHAVE : ripple::tsCAN_GET);
PackedMessage::pointer packet = boost::make_shared<PackedMessage>(msg, ripple::mtHAVE_SET);
theApp->getConnectionPool().relayMessage(NULL, packet);
}
void LedgerConsensus::adjustCount(SHAMap::ref map, const std::vector<uint160>& peers)
{ // Adjust the counts on all disputed transactions based on the set of peers taking this position
BOOST_FOREACH(u256_lct_pair& it, mDisputes)
{
bool setHas = map->hasItem(it.second->getTransactionID());
BOOST_FOREACH(const uint160& pit, peers)
it.second->setVote(pit, setHas);
}
}
void LedgerConsensus::statusChange(ripple::NodeEvent event, Ledger& ledger)
{ // Send a node status change message to our peers
ripple::TMStatusChange s;
if (!mHaveCorrectLCL)
s.set_newevent(ripple::neLOST_SYNC);
else
s.set_newevent(event);
s.set_ledgerseq(ledger.getLedgerSeq());
s.set_networktime(theApp->getOPs().getNetworkTimeNC());
uint256 hash = ledger.getParentHash();
s.set_ledgerhashprevious(hash.begin(), hash.size());
hash = ledger.getHash();
s.set_ledgerhash(hash.begin(), hash.size());
PackedMessage::pointer packet = boost::make_shared<PackedMessage>(s, ripple::mtSTATUS_CHANGE);
theApp->getConnectionPool().relayMessage(NULL, packet);
cLog(lsTRACE) << "send status change to peer";
}
int LedgerConsensus::startup()
{
return 1;
}
void LedgerConsensus::statePreClose()
{ // it is shortly before ledger close time
bool anyTransactions = theApp->getLedgerMaster().getCurrentLedger()->peekTransactionMap()->getHash().isNonZero();
int proposersClosed = mPeerPositions.size();
// This ledger is open. This computes how long since the last ledger closed
int sinceClose;
int idleInterval = 0;
if (mHaveCorrectLCL && mPreviousLedger->getCloseAgree())
{ // we can use consensus timing
sinceClose = 1000 * (theApp->getOPs().getCloseTimeNC() - mPreviousLedger->getCloseTimeNC());
idleInterval = 2 * mPreviousLedger->getCloseResolution();
if (idleInterval < LEDGER_IDLE_INTERVAL)
idleInterval = LEDGER_IDLE_INTERVAL;
}
else
{
sinceClose = 1000 * (theApp->getOPs().getCloseTimeNC() - theApp->getOPs().getLastCloseTime());
idleInterval = LEDGER_IDLE_INTERVAL;
}
if (ContinuousLedgerTiming::shouldClose(anyTransactions, mPreviousProposers, proposersClosed,
mPreviousMSeconds, sinceClose, idleInterval))
{
closeLedger();
}
}
void LedgerConsensus::closeLedger()
{
checkOurValidation();
mState = lcsESTABLISH;
mConsensusStartTime = boost::posix_time::microsec_clock::universal_time();
mCloseTime = theApp->getOPs().getCloseTimeNC();
theApp->getOPs().setLastCloseTime(mCloseTime);
statusChange(ripple::neCLOSING_LEDGER, *mPreviousLedger);
takeInitialPosition(*theApp->getLedgerMaster().closeLedger(true));
}
void LedgerConsensus::stateEstablish()
{ // we are establishing consensus
if (mCurrentMSeconds < LEDGER_MIN_CONSENSUS)
return;
updateOurPositions();
if (!mHaveCloseTimeConsensus)
{
tLog(haveConsensus(false), lsINFO) << "We have TX consensus but not CT consensus";
}
else if (haveConsensus(true))
{
cLog(lsINFO) << "Converge cutoff (" << mPeerPositions.size() << " participants)";
mState = lcsFINISHED;
beginAccept(false);
}
}
void LedgerConsensus::stateFinished()
{ // we are processing the finished ledger
// logic of calculating next ledger advances us out of this state
// nothing to do
}
void LedgerConsensus::stateAccepted()
{ // we have accepted a new ledger
endConsensus();
}
extern volatile bool doShutdown;
void LedgerConsensus::timerEntry()
{
if (doShutdown)
{
cLog(lsFATAL) << "Shutdown requested";
theApp->stop();
}
if ((mState != lcsFINISHED) && (mState != lcsACCEPTED))
checkLCL();
mCurrentMSeconds =
(boost::posix_time::microsec_clock::universal_time() - mConsensusStartTime).total_milliseconds();
mClosePercent = mCurrentMSeconds * 100 / mPreviousMSeconds;
switch (mState)
{
case lcsPRE_CLOSE: statePreClose(); return;
case lcsESTABLISH: stateEstablish(); if (mState != lcsFINISHED) return; fallthru();
case lcsFINISHED: stateFinished(); if (mState != lcsACCEPTED) return; fallthru();
case lcsACCEPTED: stateAccepted(); return;
}
assert(false);
}
void LedgerConsensus::updateOurPositions()
{
boost::posix_time::ptime peerCutoff = boost::posix_time::second_clock::universal_time();
boost::posix_time::ptime ourCutoff = peerCutoff - boost::posix_time::seconds(PROPOSE_INTERVAL);
peerCutoff -= boost::posix_time::seconds(PROPOSE_FRESHNESS);
bool changes = false;
SHAMap::pointer ourPosition;
// std::vector<uint256> addedTx, removedTx;
// Verify freshness of peer positions and compute close times
std::map<uint32, int> closeTimes;
boost::unordered_map<uint160, LedgerProposal::pointer>::iterator
it = mPeerPositions.begin(), end = mPeerPositions.end();
while (it != end)
{
if (it->second->isStale(peerCutoff))
{ // proposal is stale
uint160 peerID = it->second->getPeerID();
cLog(lsWARNING) << "Removing stale proposal from " << peerID;
BOOST_FOREACH(u256_lct_pair& it, mDisputes)
it.second->unVote(peerID);
mPeerPositions.erase(it++);
}
else
{ // proposal is still fresh
++closeTimes[roundCloseTime(it->second->getCloseTime())];
++it;
}
}
BOOST_FOREACH(u256_lct_pair& it, mDisputes)
{
if (it.second->updateVote(mClosePercent, mProposing))
{
if (!changes)
{
ourPosition = mAcquired[mOurPosition->getCurrentHash()]->snapShot(true);
assert(ourPosition);
changes = true;
}
if (it.second->getOurVote()) // now a yes
{
ourPosition->addItem(SHAMapItem(it.first, it.second->peekTransaction()), true, false);
// addedTx.push_back(it.first);
}
else // now a no
{
ourPosition->delItem(it.first);
// removedTx.push_back(it.first);
}
}
}
int neededWeight;
if (mClosePercent < AV_MID_CONSENSUS_TIME)
neededWeight = AV_INIT_CONSENSUS_PCT;
else if (mClosePercent < AV_LATE_CONSENSUS_TIME)
neededWeight = AV_MID_CONSENSUS_PCT;
else neededWeight = AV_LATE_CONSENSUS_PCT;
uint32 closeTime = 0;
mHaveCloseTimeConsensus = false;
int thresh = mPeerPositions.size();
if (thresh == 0)
{ // no other times
mHaveCloseTimeConsensus = true;
closeTime = roundCloseTime(mOurPosition->getCloseTime());
}
else
{
if (mProposing)
{
++closeTimes[roundCloseTime(mOurPosition->getCloseTime())];
++thresh;
}
thresh = ((thresh * neededWeight) + (neededWeight / 2)) / 100;
if (thresh == 0)
thresh = 1;
for (std::map<uint32, int>::iterator it = closeTimes.begin(), end = closeTimes.end(); it != end; ++it)
{
cLog(lsTRACE) << "CCTime: " << it->first << " has " << it->second << ", " << thresh << " required";
if (it->second >= thresh)
{
cLog(lsDEBUG) << "Close time consensus reached: " << it->first;
mHaveCloseTimeConsensus = true;
closeTime = it->first;
thresh = it->second;
}
}
tLog(!mHaveCloseTimeConsensus, lsDEBUG) << "No CT consensus: Proposers:" << mPeerPositions.size()
<< " Proposing:" << (mProposing ? "yes" : "no") << " Thresh:" << thresh << " Pos:" << closeTime;
}
if ((!changes) &&
((closeTime != (roundCloseTime(mOurPosition->getCloseTime()))) ||
(mOurPosition->isStale(ourCutoff))))
{ // close time changed or our position is stale
ourPosition = mAcquired[mOurPosition->getCurrentHash()]->snapShot(true);
assert(ourPosition);
changes = true;
}
if (changes)
{
uint256 newHash = ourPosition->getHash();
cLog(lsINFO) << "Position change: CTime " << closeTime << ", tx " << newHash;
if (mOurPosition->changePosition(newHash, closeTime))
{
if (mProposing)
propose();
mapComplete(newHash, ourPosition, false);
}
}
}
bool LedgerConsensus::haveConsensus(bool forReal)
{ // CHECKME: should possibly count unacquired TX sets as disagreeing
int agree = 0, disagree = 0;
uint256 ourPosition = mOurPosition->getCurrentHash();
BOOST_FOREACH(u160_prop_pair& it, mPeerPositions)
{
if (!it.second->isBowOut())
{
if (it.second->getCurrentHash() == ourPosition)
++agree;
else
++disagree;
}
}
int currentValidations = theApp->getValidations().getNodesAfter(mPrevLedgerHash);
cLog(lsDEBUG) << "Checking for TX consensus: agree=" << agree << ", disagree=" << disagree;
return ContinuousLedgerTiming::haveConsensus(mPreviousProposers, agree + disagree, agree, currentValidations,
mPreviousMSeconds, mCurrentMSeconds, forReal, mConsensusFail);
}
SHAMap::pointer LedgerConsensus::getTransactionTree(const uint256& hash, bool doAcquire)
{
boost::unordered_map<uint256, SHAMap::pointer>::iterator it = mAcquired.find(hash);
if (it == mAcquired.end())
{ // we have not completed acquiring this ledger
if (mState == lcsPRE_CLOSE)
{
SHAMap::pointer currentMap = theApp->getLedgerMaster().getCurrentLedger()->peekTransactionMap();
if (currentMap->getHash() == hash)
{
currentMap = currentMap->snapShot(false);
mapComplete(hash, currentMap, false);
return currentMap;
}
}
if (doAcquire)
{
TransactionAcquire::pointer& acquiring = mAcquiring[hash];
if (!acquiring)
{
if (!hash)
{
SHAMap::pointer empty = boost::make_shared<SHAMap>(smtTRANSACTION);
mapComplete(hash, empty, false);
return empty;
}
acquiring = boost::make_shared<TransactionAcquire>(hash);
startAcquiring(acquiring);
}
}
return SHAMap::pointer();
}
return it->second;
}
void LedgerConsensus::startAcquiring(const TransactionAcquire::pointer& acquire)
{
boost::unordered_map< uint256, std::vector< boost::weak_ptr<Peer> > >::iterator it =
mPeerData.find(acquire->getHash());
if (it != mPeerData.end())
{ // Add any peers we already know have his transaction set
std::vector< boost::weak_ptr<Peer> >& peerList = it->second;
std::vector< boost::weak_ptr<Peer> >::iterator pit = peerList.begin();
while (pit != peerList.end())
{
Peer::pointer pr = pit->lock();
if (!pr)
pit = peerList.erase(pit);
else
{
acquire->peerHas(pr);
++pit;
}
}
}
std::vector<Peer::pointer> peerList = theApp->getConnectionPool().getPeerVector();
BOOST_FOREACH(Peer::ref peer, peerList)
{
if (peer->hasTxSet(acquire->getHash()))
acquire->peerHas(peer);
}
acquire->setTimer();
}
void LedgerConsensus::propose()
{
cLog(lsTRACE) << "We propose: " <<
(mOurPosition->isBowOut() ? std::string("bowOut") : mOurPosition->getCurrentHash().GetHex());
ripple::TMProposeSet prop;
prop.set_currenttxhash(mOurPosition->getCurrentHash().begin(), 256 / 8);
prop.set_previousledger(mOurPosition->getPrevLedger().begin(), 256 / 8);
prop.set_proposeseq(mOurPosition->getProposeSeq());
prop.set_closetime(mOurPosition->getCloseTime());
std::vector<unsigned char> pubKey = mOurPosition->getPubKey();
std::vector<unsigned char> sig = mOurPosition->sign();
prop.set_nodepubkey(&pubKey[0], pubKey.size());
prop.set_signature(&sig[0], sig.size());
theApp->getConnectionPool().relayMessage(NULL,
boost::make_shared<PackedMessage>(prop, ripple::mtPROPOSE_LEDGER));
}
void LedgerConsensus::addDisputedTransaction(const uint256& txID, const std::vector<unsigned char>& tx)
{
cLog(lsDEBUG) << "Transaction " << txID << " is disputed";
boost::unordered_map<uint256, LCTransaction::pointer>::iterator it = mDisputes.find(txID);
if (it != mDisputes.end())
return;
bool ourVote = false;
if (mOurPosition)
{
boost::unordered_map<uint256, SHAMap::pointer>::iterator mit = mAcquired.find(mOurPosition->getCurrentHash());
if (mit != mAcquired.end())
ourVote = mit->second->hasItem(txID);
else
assert(false); // We don't have our own position?
}
LCTransaction::pointer txn = boost::make_shared<LCTransaction>(txID, tx, ourVote);
mDisputes[txID] = txn;
BOOST_FOREACH(u160_prop_pair& pit, mPeerPositions)
{
boost::unordered_map<uint256, SHAMap::pointer>::const_iterator cit =
mAcquired.find(pit.second->getCurrentHash());
if ((cit != mAcquired.end()) && cit->second)
txn->setVote(pit.first, cit->second->hasItem(txID));
}
if (!ourVote && theApp->isNewFlag(txID, SF_RELAYED))
{
ripple::TMTransaction msg;
msg.set_rawtransaction(&(tx.front()), tx.size());
msg.set_status(ripple::tsNEW);
msg.set_receivetimestamp(theApp->getOPs().getNetworkTimeNC());
PackedMessage::pointer packet = boost::make_shared<PackedMessage>(msg, ripple::mtTRANSACTION);
theApp->getConnectionPool().relayMessage(NULL, packet);
}
}
bool LedgerConsensus::peerPosition(const LedgerProposal::pointer& newPosition)
{
uint160 peerID = newPosition->getPeerID();
if (mDeadNodes.find(peerID) != mDeadNodes.end())
{
cLog(lsINFO) << "Position from dead node";
return false;
}
LedgerProposal::pointer& currentPosition = mPeerPositions[peerID];
if (currentPosition)
{
assert(peerID == currentPosition->getPeerID());
if (newPosition->getProposeSeq() <= currentPosition->getProposeSeq())
return false;
}
if (newPosition->getProposeSeq() == 0)
{ // new initial close time estimate
cLog(lsTRACE) << "Peer reports close time as " << newPosition->getCloseTime();
++mCloseTimes[newPosition->getCloseTime()];
}
else if (newPosition->getProposeSeq() == LedgerProposal::seqLeave)
{
BOOST_FOREACH(u256_lct_pair& it, mDisputes)
it.second->unVote(peerID);
mPeerPositions.erase(peerID);
mDeadNodes.insert(peerID);
return true;
}
cLog(lsTRACE) << "Processing peer proposal " << newPosition->getProposeSeq() << "/" << newPosition->getCurrentHash();
currentPosition = newPosition;
SHAMap::pointer set = getTransactionTree(newPosition->getCurrentHash(), true);
if (set)
{
BOOST_FOREACH(u256_lct_pair& it, mDisputes)
it.second->setVote(peerID, set->hasItem(it.first));
}
else
cLog(lsDEBUG) << "Don't have that tx set";
return true;
}
bool LedgerConsensus::peerHasSet(Peer::ref peer, const uint256& hashSet, ripple::TxSetStatus status)
{
if (status != ripple::tsHAVE) // Indirect requests are for future support
return true;
std::vector< boost::weak_ptr<Peer> >& set = mPeerData[hashSet];
BOOST_FOREACH(boost::weak_ptr<Peer>& iit, set)
if (iit.lock() == peer)
return false;
set.push_back(peer);
boost::unordered_map<uint256, TransactionAcquire::pointer>::iterator acq = mAcquiring.find(hashSet);
if (acq != mAcquiring.end())
acq->second->peerHas(peer);
return true;
}
SMAddNode LedgerConsensus::peerGaveNodes(Peer::ref peer, const uint256& setHash,
const std::list<SHAMapNode>& nodeIDs, const std::list< std::vector<unsigned char> >& nodeData)
{
boost::unordered_map<uint256, TransactionAcquire::pointer>::iterator acq = mAcquiring.find(setHash);
if (acq == mAcquiring.end())
{
cLog(lsINFO) << "Got TX data for set not acquiring: " << setHash;
return SMAddNode();
}
TransactionAcquire::pointer set = acq->second; // We must keep the set around during the function
return set->takeNodes(nodeIDs, nodeData, peer);
}
void LedgerConsensus::beginAccept(bool synchronous)
{
SHAMap::pointer consensusSet = mAcquired[mOurPosition->getCurrentHash()];
if (!consensusSet)
{
cLog(lsFATAL) << "We don't have a consensus set";
abort();
return;
}
theApp->getOPs().newLCL(mPeerPositions.size(), mCurrentMSeconds, mNewLedgerHash);
if (synchronous)
accept(consensusSet, LoadEvent::pointer());
else
{
theApp->getIOService().post(boost::bind(&LedgerConsensus::accept, shared_from_this(), consensusSet,
theApp->getJobQueue().getLoadEvent(jtACCEPTLEDGER)));
}
}
void LedgerConsensus::playbackProposals()
{
boost::unordered_map<uint160,
std::list<LedgerProposal::pointer> >& storedProposals = theApp->getOPs().peekStoredProposals();
for (boost::unordered_map< uint160, std::list<LedgerProposal::pointer> >::iterator
it = storedProposals.begin(), end = storedProposals.end(); it != end; ++it)
{
bool relay = false;
BOOST_FOREACH(const LedgerProposal::pointer& proposal, it->second)
{
if (proposal->hasSignature())
{ // we have the signature but don't know the ledger so couldn't verify
proposal->setPrevLedger(mPrevLedgerHash);
if (proposal->checkSign())
{
cLog(lsINFO) << "Applying stored proposal";
relay = peerPosition(proposal);
}
}
else if (proposal->isPrevLedger(mPrevLedgerHash))
relay = peerPosition(proposal);
if (relay)
{
cLog(lsWARNING) << "We should do delayed relay of this proposal, but we cannot";
}
#if 0 // FIXME: We can't do delayed relay because we don't have the signature
std::set<uint64> peers
if (relay && theApp->getSuppression().swapSet(proposal.getSuppress(), set, SF_RELAYED))
{
cLog(lsDEBUG) << "Stored proposal delayed relay";
ripple::TMProposeSet set;
set.set_proposeseq
set.set_currenttxhash(, 256 / 8);
previousledger
closetime
nodepubkey
signature
PackedMessage::pointer message = boost::make_shared<PackedMessage>(set, ripple::mtPROPOSE_LEDGER);
theApp->getConnectionPool().relayMessageBut(peers, message);
}
#endif
}
}
}
#define LCAT_SUCCESS 0
#define LCAT_FAIL 1
#define LCAT_RETRY 2
int LedgerConsensus::applyTransaction(TransactionEngine& engine, SerializedTransaction::ref txn, Ledger::ref ledger,
bool openLedger, bool retryAssured)
{ // Returns false if the transaction has need not be retried.
TransactionEngineParams parms = openLedger ? tapOPEN_LEDGER : tapNONE;
if (retryAssured)
parms = static_cast<TransactionEngineParams>(parms | tapRETRY);
cLog(lsDEBUG) << "TXN " << txn->getTransactionID()
<< (openLedger ? " open" : " closed")
<< (retryAssured ? "/retry" : "/final");
cLog(lsTRACE) << txn->getJson(0);
#ifndef TRUST_NETWORK
try
{
#endif
bool didApply;
TER result = engine.applyTransaction(*txn, parms, didApply);
if (didApply)
{
cLog(lsDEBUG) << "Transaction success: " << transHuman(result);
return LCAT_SUCCESS;
}
if (isTefFailure(result) || isTemMalformed(result))
{ // failure
cLog(lsDEBUG) << "Transaction failure: " << transHuman(result);
return LCAT_FAIL;
}
cLog(lsDEBUG) << "Transaction retry: " << transHuman(result);
assert(!ledger->hasTransaction(txn->getTransactionID()));
return LCAT_RETRY;
#ifndef TRUST_NETWORK
}
catch (...)
{
cLog(lsWARNING) << "Throws";
return false;
}
#endif
}
void LedgerConsensus::applyTransactions(SHAMap::ref set, Ledger::ref applyLedger,
Ledger::ref checkLedger, CanonicalTXSet& failedTransactions, bool openLgr)
{
TransactionEngine engine(applyLedger);
for (SHAMapItem::pointer item = set->peekFirstItem(); !!item; item = set->peekNextItem(item->getTag()))
if (!checkLedger->hasTransaction(item->getTag()))
{
cLog(lsINFO) << "Processing candidate transaction: " << item->getTag();
#ifndef TRUST_NETWORK
try
{
#endif
SerializerIterator sit(item->peekSerializer());
SerializedTransaction::pointer txn = boost::make_shared<SerializedTransaction>(boost::ref(sit));
if (applyTransaction(engine, txn, applyLedger, openLgr, true) == LCAT_RETRY)
failedTransactions.push_back(txn);
#ifndef TRUST_NETWORK
}
catch (...)
{
cLog(lsWARNING) << " Throws";
}
#endif
}
int changes;
bool certainRetry = true;
for (int pass = 0; pass < LEDGER_TOTAL_PASSES; ++pass)
{
cLog(lsDEBUG) << "Pass: " << pass << " Txns: " << failedTransactions.size()
<< (certainRetry ? " retriable" : " final");
changes = 0;
CanonicalTXSet::iterator it = failedTransactions.begin();
while (it != failedTransactions.end())
{
try
{
switch (applyTransaction(engine, it->second, applyLedger, openLgr, certainRetry))
{
case LCAT_SUCCESS:
it = failedTransactions.erase(it);
++changes;
break;
case LCAT_FAIL:
it = failedTransactions.erase(it);
break;
case LCAT_RETRY:
++it;
}
}
catch (...)
{
cLog(lsWARNING) << "Transaction throws";
it = failedTransactions.erase(it);
}
}
cLog(lsDEBUG) << "Pass: " << pass << " finished " << changes << " changes";
// A non-retry pass made no changes
if (!changes && !certainRetry)
return;
// Stop retriable passes
if ((!changes) || (pass >= LEDGER_RETRY_PASSES))
certainRetry = false;
}
}
uint32 LedgerConsensus::roundCloseTime(uint32 closeTime)
{
return closeTime - (closeTime % mCloseResolution);
}
void LedgerConsensus::accept(SHAMap::ref set, LoadEvent::pointer)
{
if (set->getHash().isNonZero()) // put our set where others can get it later
theApp->getOPs().takePosition(mPreviousLedger->getLedgerSeq(), set);
boost::recursive_mutex::scoped_lock masterLock(theApp->getMasterLock());
assert(set->getHash() == mOurPosition->getCurrentHash());
uint32 closeTime = roundCloseTime(mOurPosition->getCloseTime());
bool closeTimeCorrect = true;
if (closeTime == 0)
{ // we agreed to disagree
closeTimeCorrect = false;
closeTime = mPreviousLedger->getCloseTimeNC() + 1;
}
cLog(lsDEBUG) << "Report: Prop=" << (mProposing ? "yes" : "no") << " val=" << (mValidating ? "yes" : "no") <<
" corLCL=" << (mHaveCorrectLCL ? "yes" : "no") << " fail="<< (mConsensusFail ? "yes" : "no");
cLog(lsDEBUG) << "Report: Prev = " << mPrevLedgerHash << ":" << mPreviousLedger->getLedgerSeq();
cLog(lsDEBUG) << "Report: TxSt = " << set->getHash() << ", close " << closeTime << (closeTimeCorrect ? "" : "X");
CanonicalTXSet failedTransactions(set->getHash());
Ledger::pointer newLCL = boost::make_shared<Ledger>(false, boost::ref(*mPreviousLedger));
newLCL->peekTransactionMap()->armDirty();
newLCL->peekAccountStateMap()->armDirty();
cLog(lsDEBUG) << "Applying consensus set transactions to the last closed ledger";
applyTransactions(set, newLCL, newLCL, failedTransactions, false);
newLCL->updateSkipList();
newLCL->setClosed();
boost::shared_ptr<SHAMap::SHADirtyMap> acctNodes = newLCL->peekAccountStateMap()->disarmDirty();
boost::shared_ptr<SHAMap::SHADirtyMap> txnNodes = newLCL->peekTransactionMap()->disarmDirty();
// write out dirty nodes (temporarily done here) Most come before setAccepted
int fc;
while ((fc = SHAMap::flushDirty(*acctNodes, 256, hotACCOUNT_NODE, newLCL->getLedgerSeq())) > 0)
{ cLog(lsTRACE) << "Flushed " << fc << " dirty state nodes"; }
while ((fc = SHAMap::flushDirty(*txnNodes, 256, hotTRANSACTION_NODE, newLCL->getLedgerSeq())) > 0)
{ cLog(lsTRACE) << "Flushed " << fc << " dirty transaction nodes"; }
cLog(lsDEBUG) << "Report: NewL = " << newLCL->getHash() << ":" << newLCL->getLedgerSeq();
newLCL->setAccepted(closeTime, mCloseResolution, closeTimeCorrect);
newLCL->updateHash();
uint256 newLCLHash = newLCL->getHash();
if (sLog(lsTRACE))
{
cLog(lsTRACE) << "newLCL";
Json::Value p;
newLCL->addJson(p, LEDGER_JSON_DUMP_TXRP | LEDGER_JSON_DUMP_STATE);
cLog(lsTRACE) << p;
}
statusChange(ripple::neACCEPTED_LEDGER, *newLCL);
if (mValidating && !mConsensusFail)
{
uint256 signingHash;
SerializedValidation::pointer v = boost::make_shared<SerializedValidation>
(newLCLHash, theApp->getOPs().getValidationTimeNC(), mValPublic, mProposing);
v->setFieldU32(sfLedgerSequence, newLCL->getLedgerSeq());
v->sign(signingHash, mValPrivate);
v->setTrusted();
theApp->isNew(signingHash); // suppress it if we receive it
theApp->getValidations().addValidation(v);
theApp->getOPs().setLastValidation(v);
std::vector<unsigned char> validation = v->getSigned();
ripple::TMValidation val;
val.set_validation(&validation[0], validation.size());
int j = theApp->getConnectionPool().relayMessage(NULL,
boost::make_shared<PackedMessage>(val, ripple::mtVALIDATION));
cLog(lsINFO) << "CNF Val " << newLCLHash << " to " << j << " peers";
}
else
cLog(lsINFO) << "CNF newLCL " << newLCLHash;
Ledger::pointer newOL = boost::make_shared<Ledger>(true, boost::ref(*newLCL));
ScopedLock sl( theApp->getLedgerMaster().getLock());
// Apply disputed transactions that didn't get in
TransactionEngine engine(newOL);
BOOST_FOREACH(u256_lct_pair& it, mDisputes)
{
if (!it.second->getOurVote())
{ // we voted NO
try
{
cLog(lsDEBUG) << "Test applying disputed transaction that did not get in";
SerializerIterator sit(it.second->peekTransaction());
SerializedTransaction::pointer txn = boost::make_shared<SerializedTransaction>(boost::ref(sit));
if (applyTransaction(engine, txn, newOL, true, false))
failedTransactions.push_back(txn);
}
catch (...)
{
cLog(lsDEBUG) << "Failed to apply transaction we voted NO on";
}
}
}
cLog(lsDEBUG) << "Applying transactions from current open ledger";
applyTransactions(theApp->getLedgerMaster().getCurrentLedger()->peekTransactionMap(), newOL, newLCL,
failedTransactions, true);
theApp->getLedgerMaster().pushLedger(newLCL, newOL, !mConsensusFail);
mNewLedgerHash = newLCL->getHash();
mState = lcsACCEPTED;
sl.unlock();
if (mValidating)
{ // see how close our close time is to other node's close time reports
cLog(lsINFO) << "We closed at " << boost::lexical_cast<std::string>(mCloseTime);
uint64 closeTotal = mCloseTime;
int closeCount = 1;
for (std::map<uint32, int>::iterator it = mCloseTimes.begin(), end = mCloseTimes.end(); it != end; ++it)
{ // FIXME: Use median, not average
cLog(lsINFO) << boost::lexical_cast<std::string>(it->second) << " time votes for "
<< boost::lexical_cast<std::string>(it->first);
closeCount += it->second;
closeTotal += static_cast<uint64>(it->first) * static_cast<uint64>(it->second);
}
closeTotal += (closeCount / 2);
closeTotal /= closeCount;
int offset = static_cast<int>(closeTotal) - static_cast<int>(mCloseTime);
cLog(lsINFO) << "Our close offset is estimated at " << offset << " (" << closeCount << ")";
theApp->getOPs().closeTimeOffset(offset);
}
}
void LedgerConsensus::endConsensus()
{
theApp->getOPs().endConsensus(mHaveCorrectLCL);
}
void LedgerConsensus::simulate()
{
cLog(lsINFO) << "Simulating consensus";
closeLedger();
mCurrentMSeconds = 100;
beginAccept(true);
endConsensus();
cLog(lsINFO) << "Simulation complete";
}
Json::Value LedgerConsensus::getJson(bool full)
{
Json::Value ret(Json::objectValue);
ret["proposing"] = mProposing;
ret["validating"] = mValidating;
ret["proposers"] = static_cast<int>(mPeerPositions.size());
if (mHaveCorrectLCL)
{
ret["synched"] = true;
ret["ledger_seq"] = mPreviousLedger->getLedgerSeq() + 1;
ret["close_granularity"] = mCloseResolution;
}
else
ret["synched"] = false;
switch (mState)
{
case lcsPRE_CLOSE: ret["state"] = "open"; break;
case lcsESTABLISH: ret["state"] = "consensus"; break;
case lcsFINISHED: ret["state"] = "finished"; break;
case lcsACCEPTED: ret["state"] = "accepted"; break;
}
int v = mDisputes.size();
if ((v != 0) && !full)
ret["disputes"] = v;
if (mOurPosition)
ret["our_position"] = mOurPosition->getJson();
if (full)
{
ret["current_ms"] = mCurrentMSeconds;
ret["close_percent"] = mClosePercent;
ret["close_resolution"] = mCloseResolution;
ret["have_time_consensus"] = mHaveCloseTimeConsensus;
ret["previous_proposers"] = mPreviousProposers;
ret["previous_mseconds"] = mPreviousMSeconds;
if (!mPeerPositions.empty())
{
typedef boost::unordered_map<uint160, LedgerProposal::pointer>::value_type pp_t;
Json::Value ppj(Json::objectValue);
BOOST_FOREACH(pp_t& pp, mPeerPositions)
{
ppj[pp.first.GetHex()] = pp.second->getJson();
}
ret["peer_positions"] = ppj;
}
if (!mAcquired.empty())
{ // acquired
typedef boost::unordered_map<uint256, SHAMap::pointer>::value_type ac_t;
Json::Value acq(Json::arrayValue);
BOOST_FOREACH(ac_t& at, mAcquired)
{
acq.append(at.first.GetHex());
}
ret["acquired"] = acq;
}
if (!mAcquiring.empty())
{
typedef boost::unordered_map<uint256, TransactionAcquire::pointer>::value_type ac_t;
Json::Value acq(Json::arrayValue);
BOOST_FOREACH(ac_t& at, mAcquiring)
{
acq.append(at.first.GetHex());
}
ret["acquiring"] = acq;
}
if (!mDisputes.empty())
{
typedef boost::unordered_map<uint256, LCTransaction::pointer>::value_type d_t;
Json::Value dsj(Json::objectValue);
BOOST_FOREACH(d_t& dt, mDisputes)
{
dsj[dt.first.GetHex()] = dt.second->getJson();
}
ret["disputes"] = dsj;
}
if (!mCloseTimes.empty())
{
typedef std::map<uint32, int>::value_type ct_t;
Json::Value ctj(Json::objectValue);
BOOST_FOREACH(ct_t& ct, mCloseTimes)
{
ctj[boost::lexical_cast<std::string>(ct.first)] = ct.second;
}
ret["close_times"] = ctj;
}
if (!mDeadNodes.empty())
{
Json::Value dnj(Json::arrayValue);
BOOST_FOREACH(const uint160& dn, mDeadNodes)
{
dnj.append(dn.GetHex());
}
ret["dead_nodes"] = dnj;
}
}
return ret;
}
// vim:ts=4