Files
rippled/include/xrpl/protocol/detail/b58_utils.h

205 lines
6.4 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2022 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_B58_UTILS_H_INCLUDED
#define RIPPLE_PROTOCOL_B58_UTILS_H_INCLUDED
#include <xrpl/basics/contract.h>
#include <xrpl/beast/utility/instrumentation.h>
#include <xrpl/protocol/detail/token_errors.h>
#include <boost/outcome.hpp>
#include <boost/outcome/result.hpp>
#include <span>
#include <system_error>
#include <tuple>
namespace ripple {
template <class T>
using Result = boost::outcome_v2::result<T, std::error_code>;
#ifndef _MSC_VER
namespace b58_fast {
namespace detail {
// This optimizes to what hand written asm would do (single divide)
[[nodiscard]] inline std::tuple<std::uint64_t, std::uint64_t>
div_rem(std::uint64_t a, std::uint64_t b)
{
return {a / b, a % b};
}
// This optimizes to what hand written asm would do (single multiply)
[[nodiscard]] inline std::tuple<std::uint64_t, std::uint64_t>
carrying_mul(std::uint64_t a, std::uint64_t b, std::uint64_t carry)
{
unsigned __int128 const x = a;
unsigned __int128 const y = b;
unsigned __int128 const c = x * y + carry;
return {c & 0xffff'ffff'ffff'ffff, c >> 64};
}
[[nodiscard]] inline std::tuple<std::uint64_t, std::uint64_t>
carrying_add(std::uint64_t a, std::uint64_t b)
{
unsigned __int128 const x = a;
unsigned __int128 const y = b;
unsigned __int128 const c = x + y;
return {c & 0xffff'ffff'ffff'ffff, c >> 64};
}
// Add a u64 to a "big uint" value inplace.
// The bigint value is stored with the smallest coefficients first
// (i.e a[0] is the 2^0 coefficient, a[n] is the 2^(64*n) coefficient)
// panics if overflows (this is a specialized adder for b58 decoding.
// it should never overflow).
[[nodiscard]] inline TokenCodecErrc
inplace_bigint_add(std::span<std::uint64_t> a, std::uint64_t b)
{
if (a.size() <= 1)
{
return TokenCodecErrc::inputTooSmall;
}
std::uint64_t carry;
std::tie(a[0], carry) = carrying_add(a[0], b);
for (auto& v : a.subspan(1))
{
if (!carry)
{
return TokenCodecErrc::success;
}
std::tie(v, carry) = carrying_add(v, 1);
}
if (carry)
{
return TokenCodecErrc::overflowAdd;
}
return TokenCodecErrc::success;
}
[[nodiscard]] inline TokenCodecErrc
inplace_bigint_mul(std::span<std::uint64_t> a, std::uint64_t b)
{
if (a.empty())
{
return TokenCodecErrc::inputTooSmall;
}
auto const last_index = a.size() - 1;
if (a[last_index] != 0)
{
return TokenCodecErrc::inputTooLarge;
}
std::uint64_t carry = 0;
for (auto& coeff : a.subspan(0, last_index))
{
std::tie(coeff, carry) = carrying_mul(coeff, b, carry);
}
a[last_index] = carry;
return TokenCodecErrc::success;
}
// divide a "big uint" value inplace and return the mod
// numerator is stored so smallest coefficients come first
[[nodiscard]] inline std::uint64_t
inplace_bigint_div_rem(std::span<uint64_t> numerator, std::uint64_t divisor)
{
if (numerator.size() == 0)
{
// should never happen, but if it does then it seems natural to define
// the a null set of numbers to be zero, so the remainder is also zero.
// LCOV_EXCL_START
UNREACHABLE(
"ripple::b58_fast::detail::inplace_bigint_div_rem : empty "
"numerator");
return 0;
// LCOV_EXCL_STOP
}
auto to_u128 = [](std::uint64_t high,
std::uint64_t low) -> unsigned __int128 {
unsigned __int128 const high128 = high;
unsigned __int128 const low128 = low;
return ((high128 << 64) | low128);
};
auto div_rem_64 =
[](unsigned __int128 num,
std::uint64_t denom) -> std::tuple<std::uint64_t, std::uint64_t> {
unsigned __int128 const denom128 = denom;
unsigned __int128 const d = num / denom128;
unsigned __int128 const r = num - (denom128 * d);
XRPL_ASSERT(
d >> 64 == 0,
"ripple::b58_fast::detail::inplace_bigint_div_rem::div_rem_64 : "
"valid division result");
XRPL_ASSERT(
r >> 64 == 0,
"ripple::b58_fast::detail::inplace_bigint_div_rem::div_rem_64 : "
"valid remainder");
return {static_cast<std::uint64_t>(d), static_cast<std::uint64_t>(r)};
};
std::uint64_t prev_rem = 0;
int const last_index = numerator.size() - 1;
std::tie(numerator[last_index], prev_rem) =
div_rem(numerator[last_index], divisor);
for (int i = last_index - 1; i >= 0; --i)
{
unsigned __int128 const cur_num = to_u128(prev_rem, numerator[i]);
std::tie(numerator[i], prev_rem) = div_rem_64(cur_num, divisor);
}
return prev_rem;
}
// convert from base 58^10 to base 58
// put largest coeffs first
// the `_be` suffix stands for "big endian"
[[nodiscard]] inline std::array<std::uint8_t, 10>
b58_10_to_b58_be(std::uint64_t input)
{
[[maybe_unused]] static constexpr std::uint64_t B_58_10 =
430804206899405824; // 58^10;
XRPL_ASSERT(
input < B_58_10,
"ripple::b58_fast::detail::b58_10_to_b58_be : valid input");
constexpr std::size_t resultSize = 10;
std::array<std::uint8_t, resultSize> result{};
int i = 0;
while (input > 0)
{
std::uint64_t rem;
std::tie(input, rem) = div_rem(input, 58);
result[resultSize - 1 - i] = rem;
i += 1;
}
return result;
}
} // namespace detail
} // namespace b58_fast
#endif
} // namespace ripple
#endif // RIPPLE_PROTOCOL_B58_UTILS_H_INCLUDED