Files
rippled/include/xrpl/basics/Number.h

967 lines
28 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#pragma once
#include <xrpl/beast/utility/instrumentation.h>
#include <cstdint>
#include <functional>
#include <limits>
#include <optional>
#include <ostream>
#include <string>
#ifdef _MSC_VER
#include <boost/multiprecision/cpp_int.hpp>
#endif // !defined(_MSC_VER)
namespace xrpl {
class Number;
std::string
to_string(Number const& amount);
/** Returns a rough estimate of log10(value).
*
* The return value is a pair (log, rem), where log is the estimated log10,
* and rem is value divided by 10^log. If rem is 1, then value is an exact
* power of ten, and log is the exact log10(value).
*
* This function only works for positive values.
*/
template <typename T>
constexpr std::pair<int, T>
logTenEstimate(T value)
{
int log = 0;
T remainder = value;
while (value >= 10)
{
if (value % 10 == 0)
remainder = remainder / 10;
value /= 10;
++log;
}
return {log, remainder};
}
template <typename T>
constexpr std::optional<int>
logTen(T value)
{
auto const est = logTenEstimate(value);
if (est.second == 1)
return est.first;
return std::nullopt;
}
template <typename T>
constexpr bool
isPowerOfTen(T value)
{
return logTen(value).has_value();
}
/** MantissaRange defines a range for the mantissa of a normalized Number.
*
* The mantissa is in the range [min, max], where
*
* The mantissa_scale enum indicates whether the range is "small" or "large".
* This intentionally restricts the number of MantissaRanges that can be
* used to two: one for each scale.
*
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
* value of 10^15, and a max value of 10^16-1. This was sufficient for
* uses before Lending Protocol was implemented, mostly related to AMM.
*
* However, it does not have sufficient precision to represent the full integer
* range of int64_t values (-2^63 to 2^63-1), which are needed for XRP and MPT
* values. The implementation of SingleAssetVault, and LendingProtocol need to
* represent those integer values accurately and precisely, both for the
* STNumber field type, and for internal calculations. That necessitated the
* "large" scale.
*
* The "large" scale is intended to represent all values that can be represented
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
* (truncated), and a max value of 2^63-1.
*
* Note that if the mentioned amendments are eventually retired, this class
* should be left in place, but the "small" scale option should be removed. This
* will allow for future expansion beyond 64-bits if it is ever needed.
*/
struct MantissaRange
{
using rep = std::uint64_t;
enum mantissa_scale { small, large };
explicit constexpr MantissaRange(mantissa_scale scale_)
: max(getMax(scale_))
, min(computeMin(max))
, referenceMin(getReferenceMin(scale_, min))
, log(computeLog(min))
, scale(scale_)
{
// Since this is constexpr, if any of these throw, it won't compile
if (min * 10 <= max)
throw std::out_of_range("min * 10 <= max");
if (max / 10 >= min)
throw std::out_of_range("max / 10 >= min");
if ((min - 1) * 10 > max)
throw std::out_of_range("(min - 1) * 10 > max");
// This is a little hacky
if ((max + 10) / 10 < min)
throw std::out_of_range("(max + 10) / 10 < min");
}
// Explicitly delete copy and move operations
MantissaRange(MantissaRange const&) = delete;
MantissaRange(MantissaRange&&) = delete;
MantissaRange&
operator=(MantissaRange const&) = delete;
MantissaRange&
operator=(MantissaRange&&) = delete;
rep max;
rep min;
// This is not a great name. Used to determine if mantissas are in range,
// but have fewer digits than max
rep referenceMin;
int log;
mantissa_scale scale;
private:
static constexpr rep
getMax(mantissa_scale scale)
{
switch (scale)
{
case small:
return 9'999'999'999'999'999ULL;
case large:
return std::numeric_limits<std::int64_t>::max();
default:
// Since this can never be called outside a non-constexpr
// context, this throw assures that the build fails if an
// invalid scale is used.
throw std::runtime_error("Unknown mantissa scale");
}
}
static constexpr rep
computeMin(rep max)
{
return max / 10 + 1;
}
static constexpr rep
getReferenceMin(mantissa_scale scale, rep min)
{
switch (scale)
{
case large:
return 1'000'000'000'000'000'000ULL;
default:
if (isPowerOfTen(min))
return min;
throw std::runtime_error("Unknown/bad mantissa scale");
}
}
static constexpr rep
computeLog(rep min)
{
auto const estimate = logTenEstimate(min);
return estimate.first + (estimate.second == 1 ? 0 : 1);
}
};
// Like std::integral, but only 64-bit integral types.
template <class T>
concept Integral64 = std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
namespace detail {
#ifdef _MSC_VER
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
template <class T>
concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
} // namespace detail
/** Number is a floating point type that can represent a wide range of values.
*
* It can represent all values that can be represented by an STAmount -
* regardless of asset type - XRPAmount, MPTAmount, and IOUAmount, with at least
* as much precision as those types require.
*
* ---- Internal Operational Representation ----
*
* Internally, Number is represented with three values:
* 1. a bool sign flag,
* 2. a std::uint64_t mantissa,
* 3. an int exponent.
*
* The internal mantissa is an unsigned integer in the range defined by the
* current MantissaRange. The exponent is an integer in the range
* [minExponent, maxExponent].
*
* See the description of MantissaRange for more details on the ranges.
*
* A non-zero mantissa is (almost) always normalized, meaning it and the
* exponent are grown or shrunk until the mantissa is in the range
* [MantissaRange.referenceMin, MantissaRange.referenceMin * 10 - 1].
*
* This internal representation is only used during some operations to ensure
* that the mantissa is a known, predictable size. The class itself stores the
* values using the external representation described below.
*
* Note:
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
* should only be used at specific conversion points, some constexpr
* values, and in unit tests.
* 2. Unlike MantissaRange.min, referenceMin is always an exact power of 10,
* so a mantissa in the internal representation will always have a
* consistent number of digits.
* 3. The functions toInternal() and fromInternal() are used to convert
* between the two representations.
*
* ---- External Interface ----
*
* The external interface of Number consists of a std::int64_t mantissa, which
* is restricted to 63-bits, and an int exponent, which must be in the range
* [minExponent, maxExponent]. The range of the mantissa depends on which
* MantissaRange is currently active. For the "short" range, the mantissa will
* be between 10^15 and 10^16-1. For the "large" range, the mantissa will be
* between -(2^63-1) and 2^63-1. As noted above, the "large" range is needed to
* represent the full range of valid XRP and MPT integer values accurately.
*
* Note:
* 1. The "large" mantissa range is (2^63/10+1) to 2^63-1. 2^63-1 is between
* 10^18 and 10^19-1, and (2^63/10+1) is between 10^17 and 10^18-1. Thus,
* the mantissa may have 18 or 19 digits. This value will be modified to
* always have 19 digits before some operations to ensure consistency.
* 2. The functions mantissa() and exponent() return the external view of the
* Number value, specifically using a signed 63-bit mantissa.
* 3. Number cannot represent -2^63 (std::numeric_limits<std::int64_t>::min())
* as an exact integer, but it doesn't need to, because all asset values
* on-ledger are non-negative. This is due to implementation details of
* several operations which use unsigned arithmetic internally. This is
* sufficient to represent all valid XRP values (where the absolute value
* can not exceed INITIAL_XRP: 10^17), and MPT values (where the absolute
* value can not exceed maxMPTokenAmount: 2^63-1).
*
* ---- Mantissa Range Switching ----
*
* The mantissa range may be changed at runtime via setMantissaScale(). The
* default mantissa range is "large". The range is updated whenever transaction
* processing begins, based on whether SingleAssetVault or LendingProtocol are
* enabled. If either is enabled, the mantissa range is set to "large". If not,
* it is set to "small", preserving backward compatibility and correct
* "amendment-gating".
*
* It is extremely unlikely that any more calls to setMantissaScale() will be
* needed outside of unit tests.
*
* ---- Usage With Different Ranges ----
*
* Outside of unit tests, and existing checks, code that uses Number should not
* know or care which mantissa range is active.
*
* The results of computations using Numbers with a small mantissa may differ
* from computations using Numbers with a large mantissa, specifically as it
* effects the results after rounding. That is why the large mantissa range is
* amendment gated in transaction processing.
*
* It is extremely unlikely that any more calls to getMantissaScale() will be
* needed outside of unit tests.
*
* Code that uses Number should not assume or check anything about the
* mantissa() or exponent() except that they fit into the "large" range
* specified in the "External Interface" section.
*
* ----- Unit Tests -----
*
* Within unit tests, it may be useful to explicitly switch between the two
* ranges, or to check which range is active when checking the results of
* computations. If the test is doing the math directly, the
* set/getMantissaScale() functions may be most appropriate. However, if the
* test has anything to do with transaction processing, it should enable or
* disable the amendments that control the mantissa range choice
* (SingleAssetVault and LendingProtocol), and/or check if either of those
* amendments are enabled to determine which result to expect.
*
*/
class Number
{
using rep = std::int64_t;
using internalrep = MantissaRange::rep;
rep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
public:
// The range for the exponent when normalized
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
// May need to make unchecked private
struct unchecked
{
explicit unchecked() = default;
};
// Like unchecked, normalized is used with the ctors that take an
// internalrep mantissa. Unlike unchecked, those ctors will normalize the
// value.
// Only unit tests are expected to use this class
struct normalized
{
explicit normalized() = default;
};
explicit constexpr Number() = default;
Number(rep mantissa);
explicit Number(rep mantissa, int exponent);
explicit constexpr Number(bool negative, internalrep mantissa, int exponent, unchecked) noexcept;
// Assume unsigned values are... unsigned. i.e. positive
explicit constexpr Number(internalrep mantissa, int exponent, unchecked) noexcept;
// Only unit tests are expected to use this ctor
explicit Number(bool negative, internalrep mantissa, int exponent, normalized);
// Assume unsigned values are... unsigned. i.e. positive
explicit Number(internalrep mantissa, int exponent, normalized);
constexpr rep
mantissa() const noexcept;
constexpr int
exponent() const noexcept;
constexpr Number
operator+() const noexcept;
constexpr Number
operator-() const noexcept;
Number&
operator++();
Number
operator++(int);
Number&
operator--();
Number
operator--(int);
Number&
operator+=(Number const& x);
Number&
operator-=(Number const& x);
Number&
operator*=(Number const& x);
Number&
operator/=(Number const& x);
static Number
min() noexcept;
static Number
max() noexcept;
static Number
lowest() noexcept;
/** Conversions to Number are implicit and conversions away from Number
* are explicit. This design encourages and facilitates the use of Number
* as the preferred type for floating point arithmetic as it makes
* "mixed mode" more convenient, e.g. MPTAmount + Number.
*/
explicit
operator rep() const; // round to nearest, even on tie
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
}
friend constexpr bool
operator!=(Number const& x, Number const& y) noexcept
{
return !(x == y);
}
friend constexpr bool
operator<(Number const& x, Number const& y) noexcept
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
if (lneg != rneg)
return lneg;
// Both have same sign and the left is zero: the right must be
// greater than 0.
if (x.mantissa_ == 0)
return y.mantissa_ > 0;
// Both have same sign, the right is zero and the left is non-zero.
if (y.mantissa_ == 0)
return false;
// Both have the same sign, compare by exponents:
if (x.exponent_ > y.exponent_)
return lneg;
if (x.exponent_ < y.exponent_)
return !lneg;
// If equal exponents, compare mantissas
return x.mantissa_ < y.mantissa_;
}
/** Return the sign of the amount */
constexpr int
signum() const noexcept
{
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
}
Number
truncate() const noexcept;
friend constexpr bool
operator>(Number const& x, Number const& y) noexcept
{
return y < x;
}
friend constexpr bool
operator<=(Number const& x, Number const& y) noexcept
{
return !(y < x);
}
friend constexpr bool
operator>=(Number const& x, Number const& y) noexcept
{
return !(x < y);
}
friend std::ostream&
operator<<(std::ostream& os, Number const& x)
{
return os << to_string(x);
}
friend std::string
to_string(Number const& amount);
friend Number
root(Number f, unsigned d);
friend Number
root2(Number f);
friend Number
power(Number const& f, unsigned n, unsigned d);
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
getround();
// Returns previously set mode
static rounding_mode
setround(rounding_mode mode);
/** Returns which mantissa scale is currently in use for normalization.
*
* If you think you need to call this outside of unit tests, no you don't.
*/
static MantissaRange::mantissa_scale
getMantissaScale();
/** Changes which mantissa scale is used for normalization.
*
* If you think you need to call this outside of unit tests, no you don't.
*/
static void
setMantissaScale(MantissaRange::mantissa_scale scale);
inline static internalrep
minMantissa()
{
return range_.get().min;
}
inline static internalrep
maxMantissa()
{
return range_.get().max;
}
inline static int
mantissaLog()
{
return range_.get().log;
}
/// oneSmall is needed because the ranges are private
constexpr static Number
oneSmall();
/// oneLarge is needed because the ranges are private
constexpr static Number
oneLarge();
// And one is needed because it needs to choose between oneSmall and
// oneLarge based on the current range
static Number
one();
template <Integral64 T>
[[nodiscard]]
std::pair<T, int>
normalizeToRange(T minMantissa, T maxMantissa) const;
private:
static thread_local rounding_mode mode_;
// The available ranges for mantissa
constexpr static MantissaRange smallRange{MantissaRange::small};
static_assert(isPowerOfTen(smallRange.min));
static_assert(smallRange.min == 1'000'000'000'000'000LL);
static_assert(smallRange.max == 9'999'999'999'999'999LL);
static_assert(smallRange.referenceMin == smallRange.min);
static_assert(smallRange.log == 15);
constexpr static MantissaRange largeRange{MantissaRange::large};
static_assert(!isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
static_assert(largeRange.max == std::numeric_limits<rep>::max());
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
static_assert(largeRange.log == 18);
// There are 2 values that will not fit in largeRange without some extra
// work
// * 9223372036854775808
// * 9223372036854775809
// They both end up < min, but with a leftover. If they round up, everything
// will be fine. If they don't, we'll need to bring them up into range.
// Guard::bringIntoRange handles this situation.
// The range for the mantissa when normalized.
// Use reference_wrapper to avoid making copies, and prevent accidentally
// changing the values inside the range.
static thread_local std::reference_wrapper<MantissaRange const> range_;
// And one is needed because it needs to choose between oneSmall and
// oneLarge based on the current range
static Number
one(MantissaRange const& range);
static Number
root(MantissaRange const& range, Number f, unsigned d);
void
normalize(MantissaRange const& range);
void
normalize();
/** Normalize Number components to an arbitrary range.
*
* min/maxMantissa are parameters because this function is used by both
* normalize(), which reads from range_, and by normalizeToRange,
* which is public and can accept an arbitrary range from the caller.
*/
template <class T>
static void
normalize(
bool& negative,
T& mantissa,
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa);
template <class T>
friend void
doNormalize(
bool& negative,
T& mantissa,
int& exponent,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa);
bool
isnormal(MantissaRange const& range) const noexcept;
bool
isnormal() const noexcept;
// Copy the number, but modify the exponent by "exponentDelta". Because the
// mantissa doesn't change, the result will be "mostly" normalized, but the
// exponent could go out of range, so it will be checked.
Number
shiftExponent(int exponentDelta) const;
// Safely return the absolute value of a rep (int64) mantissa as an internalrep (uint64).
static internalrep
externalToInternal(rep mantissa);
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal(MantissaRange const& range) const;
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal() const;
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent, MantissaRange const* pRange);
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent);
class Guard;
public:
constexpr static internalrep largestMantissa = largeRange.max;
};
inline constexpr Number::Number(bool negative, internalrep mantissa, int exponent, unchecked) noexcept
: mantissa_{negative ? -static_cast<rep>(mantissa) : static_cast<rep>(mantissa)}, exponent_{exponent}
{
}
inline constexpr Number::Number(internalrep mantissa, int exponent, unchecked) noexcept
: Number(false, mantissa, exponent, unchecked{})
{
}
constexpr static Number numZero{};
inline Number::Number(internalrep mantissa, int exponent, normalized) : Number(false, mantissa, exponent, normalized{})
{
}
inline Number::Number(rep mantissa, int exponent)
: Number(mantissa < 0, externalToInternal(mantissa), exponent, normalized{})
{
}
inline Number::Number(rep mantissa) : Number{mantissa, 0}
{
}
/** Returns the mantissa of the external view of the Number.
*
* Please see the "---- External Interface ----" section of the class
* documentation for an explanation of why the internal value may be modified.
*/
inline constexpr Number::rep
Number::mantissa() const noexcept
{
return mantissa_;
}
/** Returns the exponent of the external view of the Number.
*
* Please see the "---- External Interface ----" section of the class
* documentation for an explanation of why the internal value may be modified.
*/
inline constexpr int
Number::exponent() const noexcept
{
return exponent_;
}
inline constexpr Number
Number::operator+() const noexcept
{
return *this;
}
inline constexpr Number
Number::operator-() const noexcept
{
if (mantissa_ == 0)
return Number{};
auto x = *this;
x.mantissa_ = -x.mantissa_;
return x;
}
inline Number&
Number::operator++()
{
*this += one();
return *this;
}
inline Number
Number::operator++(int)
{
auto x = *this;
++(*this);
return x;
}
inline Number&
Number::operator--()
{
*this -= one();
return *this;
}
inline Number
Number::operator--(int)
{
auto x = *this;
--(*this);
return x;
}
inline Number&
Number::operator-=(Number const& x)
{
return *this += -x;
}
inline Number
operator+(Number const& x, Number const& y)
{
auto z = x;
z += y;
return z;
}
inline Number
operator-(Number const& x, Number const& y)
{
auto z = x;
z -= y;
return z;
}
inline Number
operator*(Number const& x, Number const& y)
{
auto z = x;
z *= y;
return z;
}
inline Number
operator/(Number const& x, Number const& y)
{
auto z = x;
z /= y;
return z;
}
inline Number
Number::min() noexcept
{
return Number{false, range_.get().min, minExponent, unchecked{}};
}
inline Number
Number::max() noexcept
{
return Number{false, range_.get().max, maxExponent, unchecked{}};
}
inline Number
Number::lowest() noexcept
{
return Number{true, range_.get().max, maxExponent, unchecked{}};
}
inline bool
Number::isnormal(MantissaRange const& range) const noexcept
{
auto const abs_m = externalToInternal(mantissa_);
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max && //
minExponent <= exponent_ && exponent_ <= maxExponent);
}
inline bool
Number::isnormal() const noexcept
{
return isnormal(range_);
}
template <Integral64 T>
std::pair<T, int>
Number::normalizeToRange(T minMantissa, T maxMantissa) const
{
bool negative = mantissa_ < 0;
internalrep mantissa = externalToInternal(mantissa_);
int exponent = exponent_;
if constexpr (std::is_unsigned_v<T>)
{
XRPL_ASSERT_PARTS(!negative, "xrpl::Number::normalizeToRange", "Number is non-negative for unsigned range.");
// To avoid logical errors in release builds, throw if the Number is
// negative for an unsigned range.
if (negative)
throw std::runtime_error(
"Number::normalizeToRange: Number is negative for "
"unsigned range.");
}
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
// Cast mantissa to signed type first (if T is a signed type) to avoid
// unsigned integer overflow when multiplying by negative sign
T signedMantissa = negative ? -static_cast<T>(mantissa) : static_cast<T>(mantissa);
return std::make_pair(signedMantissa, exponent);
}
inline constexpr Number
abs(Number x) noexcept
{
if (x < Number{})
x = -x;
return x;
}
// Returns f^n
// Uses a log_2(n) number of multiplications
Number
power(Number const& f, unsigned n);
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the root of the polynomial g(x) = x^d - f
Number
root(Number f, unsigned d);
Number
root2(Number f);
// Returns f^(n/d)
Number
power(Number const& f, unsigned n, unsigned d);
// Return 0 if abs(x) < limit, else returns x
inline constexpr Number
squelch(Number const& x, Number const& limit) noexcept
{
if (abs(x) < limit)
return Number{};
return x;
}
inline std::string
to_string(MantissaRange::mantissa_scale const& scale)
{
switch (scale)
{
case MantissaRange::small:
return "small";
case MantissaRange::large:
return "large";
default:
throw std::runtime_error("Bad scale");
}
}
class saveNumberRoundMode
{
Number::rounding_mode mode_;
public:
~saveNumberRoundMode()
{
Number::setround(mode_);
}
explicit saveNumberRoundMode(Number::rounding_mode mode) noexcept : mode_{mode}
{
}
saveNumberRoundMode(saveNumberRoundMode const&) = delete;
saveNumberRoundMode&
operator=(saveNumberRoundMode const&) = delete;
};
// saveNumberRoundMode doesn't do quite enough for us. What we want is a
// Number::RoundModeGuard that sets the new mode and restores the old mode
// when it leaves scope. Since Number doesn't have that facility, we'll
// build it here.
class NumberRoundModeGuard
{
saveNumberRoundMode saved_;
public:
explicit NumberRoundModeGuard(Number::rounding_mode mode) noexcept : saved_{Number::setround(mode)}
{
}
NumberRoundModeGuard(NumberRoundModeGuard const&) = delete;
NumberRoundModeGuard&
operator=(NumberRoundModeGuard const&) = delete;
};
/** Sets the new scale and restores the old scale when it leaves scope.
*
* If you think you need to use this class outside of unit tests, no you don't.
*
*/
class NumberMantissaScaleGuard
{
MantissaRange::mantissa_scale const saved_;
public:
explicit NumberMantissaScaleGuard(MantissaRange::mantissa_scale scale) noexcept : saved_{Number::getMantissaScale()}
{
Number::setMantissaScale(scale);
}
~NumberMantissaScaleGuard()
{
Number::setMantissaScale(saved_);
}
NumberMantissaScaleGuard(NumberMantissaScaleGuard const&) = delete;
NumberMantissaScaleGuard&
operator=(NumberMantissaScaleGuard const&) = delete;
};
} // namespace xrpl