//------------------------------------------------------------------------------ /* This file is part of Beast: https://github.com/vinniefalco/Beast Copyright 2013, Vinnie Falco Portions of this file are from JUCE. Copyright (c) 2013 - Raw Material Software Ltd. Please visit http://www.juce.com Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef BEAST_ARITHMETIC_H_INCLUDED #define BEAST_ARITHMETIC_H_INCLUDED #include #include #include #include #include namespace beast { // Some indispensible min/max functions /** Returns the larger of two values. */ template inline Type bmax (const Type a, const Type b) { return (a < b) ? b : a; } /** Returns the larger of three values. */ template inline Type bmax (const Type a, const Type b, const Type c) { return (a < b) ? ((b < c) ? c : b) : ((a < c) ? c : a); } /** Returns the larger of four values. */ template inline Type bmax (const Type a, const Type b, const Type c, const Type d) { return bmax (a, bmax (b, c, d)); } /** Returns the smaller of two values. */ template inline Type bmin (const Type a, const Type b) { return (b < a) ? b : a; } /** Returns the smaller of three values. */ template inline Type bmin (const Type a, const Type b, const Type c) { return (b < a) ? ((c < b) ? c : b) : ((c < a) ? c : a); } /** Returns the smaller of four values. */ template inline Type bmin (const Type a, const Type b, const Type c, const Type d) { return bmin (a, bmin (b, c, d)); } /** Scans an array of values, returning the minimum value that it contains. */ template const Type findMinimum (const Type* data, int numValues) { if (numValues <= 0) return Type(); Type result (*data++); while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample) { const Type& v = *data++; if (v < result) result = v; } return result; } /** Scans an array of values, returning the maximum value that it contains. */ template const Type findMaximum (const Type* values, int numValues) { if (numValues <= 0) return Type(); Type result (*values++); while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample) { const Type& v = *values++; if (result < v) result = v; } return result; } /** Scans an array of values, returning the minimum and maximum values that it contains. */ template void findMinAndMax (const Type* values, int numValues, Type& lowest, Type& highest) { if (numValues <= 0) { lowest = Type(); highest = Type(); } else { Type mn (*values++); Type mx (mn); while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample) { const Type& v = *values++; if (mx < v) mx = v; if (v < mn) mn = v; } lowest = mn; highest = mx; } } //============================================================================== /** Constrains a value to keep it within a given range. This will check that the specified value lies between the lower and upper bounds specified, and if not, will return the nearest value that would be in-range. Effectively, it's like calling bmax (lowerLimit, bmin (upperLimit, value)). Note that it expects that lowerLimit <= upperLimit. If this isn't true, the results will be unpredictable. @param lowerLimit the minimum value to return @param upperLimit the maximum value to return @param valueToConstrain the value to try to return @returns the closest value to valueToConstrain which lies between lowerLimit and upperLimit (inclusive) @see blimit0To, bmin, bmax */ template inline Type blimit (const Type lowerLimit, const Type upperLimit, const Type valueToConstrain) noexcept { bassert (lowerLimit <= upperLimit); // if these are in the wrong order, results are unpredictable.. return (valueToConstrain < lowerLimit) ? lowerLimit : ((upperLimit < valueToConstrain) ? upperLimit : valueToConstrain); } /** Returns true if a value is at least zero, and also below a specified upper limit. This is basically a quicker way to write: @code valueToTest >= 0 && valueToTest < upperLimit @endcode */ template inline bool isPositiveAndBelow (Type valueToTest, Type upperLimit) noexcept { bassert (Type() <= upperLimit); // makes no sense to call this if the upper limit is itself below zero.. return Type() <= valueToTest && valueToTest < upperLimit; } template <> inline bool isPositiveAndBelow (const int valueToTest, const int upperLimit) noexcept { bassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero.. return static_cast (valueToTest) < static_cast (upperLimit); } /** Returns true if a value is at least zero, and also less than or equal to a specified upper limit. This is basically a quicker way to write: @code valueToTest >= 0 && valueToTest <= upperLimit @endcode */ template inline bool isPositiveAndNotGreaterThan (Type valueToTest, Type upperLimit) noexcept { bassert (Type() <= upperLimit); // makes no sense to call this if the upper limit is itself below zero.. return Type() <= valueToTest && valueToTest <= upperLimit; } template <> inline bool isPositiveAndNotGreaterThan (const int valueToTest, const int upperLimit) noexcept { bassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero.. return static_cast (valueToTest) <= static_cast (upperLimit); } //============================================================================== /** Handy function for getting the number of elements in a simple const C array. E.g. @code static int myArray[] = { 1, 2, 3 }; int numElements = numElementsInArray (myArray) // returns 3 @endcode */ template int numElementsInArray (Type (&array)[N]) { (void) array; // (required to avoid a spurious warning in MS compilers) (void) sizeof (0[array]); // This line should cause an error if you pass an object with a user-defined subscript operator return N; } /** 64-bit abs function. */ inline std::int64_t abs64 (const std::int64_t n) noexcept { return (n >= 0) ? n : -n; } //============================================================================== #if BEAST_MSVC #pragma optimize ("t", off) #ifndef __INTEL_COMPILER #pragma float_control (precise, on, push) #endif #endif /** Fast floating-point-to-integer conversion. This is faster than using the normal c++ cast to convert a float to an int, and it will round the value to the nearest integer, rather than rounding it down like the normal cast does. Note that this routine gets its speed at the expense of some accuracy, and when rounding values whose floating point component is exactly 0.5, odd numbers and even numbers will be rounded up or down differently. */ template inline int roundToInt (const FloatType value) noexcept { #ifdef __INTEL_COMPILER #pragma float_control (precise, on, push) #endif union { int asInt[2]; double asDouble; } n; n.asDouble = ((double) value) + 6755399441055744.0; #if BEAST_BIG_ENDIAN return n.asInt [1]; #else return n.asInt [0]; #endif } #if BEAST_MSVC #ifndef __INTEL_COMPILER #pragma float_control (pop) #endif #pragma optimize ("", on) // resets optimisations to the project defaults #endif } #endif