#ifndef XRPL_BASICS_NUMBER_H_INCLUDED #define XRPL_BASICS_NUMBER_H_INCLUDED #include #include #include #include namespace ripple { class Number; std::string to_string(Number const& amount); class Number { using rep = std::int64_t; rep mantissa_{0}; int exponent_{std::numeric_limits::lowest()}; public: // The range for the mantissa when normalized constexpr static std::int64_t minMantissa = 1'000'000'000'000'000LL; constexpr static std::int64_t maxMantissa = 9'999'999'999'999'999LL; // The range for the exponent when normalized constexpr static int minExponent = -32768; constexpr static int maxExponent = 32768; struct unchecked { explicit unchecked() = default; }; explicit constexpr Number() = default; Number(rep mantissa); explicit Number(rep mantissa, int exponent); explicit constexpr Number(rep mantissa, int exponent, unchecked) noexcept; constexpr rep mantissa() const noexcept; constexpr int exponent() const noexcept; constexpr Number operator+() const noexcept; constexpr Number operator-() const noexcept; Number& operator++(); Number operator++(int); Number& operator--(); Number operator--(int); Number& operator+=(Number const& x); Number& operator-=(Number const& x); Number& operator*=(Number const& x); Number& operator/=(Number const& x); static constexpr Number min() noexcept; static constexpr Number max() noexcept; static constexpr Number lowest() noexcept; /** Conversions to Number are implicit and conversions away from Number * are explicit. This design encourages and facilitates the use of Number * as the preferred type for floating point arithmetic as it makes * "mixed mode" more convenient, e.g. MPTAmount + Number. */ explicit operator rep() const; // round to nearest, even on tie friend constexpr bool operator==(Number const& x, Number const& y) noexcept { return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_; } friend constexpr bool operator!=(Number const& x, Number const& y) noexcept { return !(x == y); } friend constexpr bool operator<(Number const& x, Number const& y) noexcept { // If the two amounts have different signs (zero is treated as positive) // then the comparison is true iff the left is negative. bool const lneg = x.mantissa_ < 0; bool const rneg = y.mantissa_ < 0; if (lneg != rneg) return lneg; // Both have same sign and the left is zero: the right must be // greater than 0. if (x.mantissa_ == 0) return y.mantissa_ > 0; // Both have same sign, the right is zero and the left is non-zero. if (y.mantissa_ == 0) return false; // Both have the same sign, compare by exponents: if (x.exponent_ > y.exponent_) return lneg; if (x.exponent_ < y.exponent_) return !lneg; // If equal exponents, compare mantissas return x.mantissa_ < y.mantissa_; } /** Return the sign of the amount */ constexpr int signum() const noexcept { return (mantissa_ < 0) ? -1 : (mantissa_ ? 1 : 0); } Number truncate() const noexcept { if (exponent_ >= 0 || mantissa_ == 0) return *this; Number ret = *this; while (ret.exponent_ < 0 && ret.mantissa_ != 0) { ret.exponent_ += 1; ret.mantissa_ /= rep(10); } // We are guaranteed that normalize() will never throw an exception // because exponent is either negative or zero at this point. ret.normalize(); return ret; } friend constexpr bool operator>(Number const& x, Number const& y) noexcept { return y < x; } friend constexpr bool operator<=(Number const& x, Number const& y) noexcept { return !(y < x); } friend constexpr bool operator>=(Number const& x, Number const& y) noexcept { return !(x < y); } friend std::ostream& operator<<(std::ostream& os, Number const& x) { return os << to_string(x); } // Thread local rounding control. Default is to_nearest enum rounding_mode { to_nearest, towards_zero, downward, upward }; static rounding_mode getround(); // Returns previously set mode static rounding_mode setround(rounding_mode mode); private: static thread_local rounding_mode mode_; void normalize(); constexpr bool isnormal() const noexcept; class Guard; }; inline constexpr Number::Number(rep mantissa, int exponent, unchecked) noexcept : mantissa_{mantissa}, exponent_{exponent} { } inline Number::Number(rep mantissa, int exponent) : mantissa_{mantissa}, exponent_{exponent} { normalize(); } inline Number::Number(rep mantissa) : Number{mantissa, 0} { } inline constexpr Number::rep Number::mantissa() const noexcept { return mantissa_; } inline constexpr int Number::exponent() const noexcept { return exponent_; } inline constexpr Number Number::operator+() const noexcept { return *this; } inline constexpr Number Number::operator-() const noexcept { auto x = *this; x.mantissa_ = -x.mantissa_; return x; } inline Number& Number::operator++() { *this += Number{1000000000000000, -15, unchecked{}}; return *this; } inline Number Number::operator++(int) { auto x = *this; ++(*this); return x; } inline Number& Number::operator--() { *this -= Number{1000000000000000, -15, unchecked{}}; return *this; } inline Number Number::operator--(int) { auto x = *this; --(*this); return x; } inline Number& Number::operator-=(Number const& x) { return *this += -x; } inline Number operator+(Number const& x, Number const& y) { auto z = x; z += y; return z; } inline Number operator-(Number const& x, Number const& y) { auto z = x; z -= y; return z; } inline Number operator*(Number const& x, Number const& y) { auto z = x; z *= y; return z; } inline Number operator/(Number const& x, Number const& y) { auto z = x; z /= y; return z; } inline constexpr Number Number::min() noexcept { return Number{minMantissa, minExponent, unchecked{}}; } inline constexpr Number Number::max() noexcept { return Number{maxMantissa, maxExponent, unchecked{}}; } inline constexpr Number Number::lowest() noexcept { return -Number{maxMantissa, maxExponent, unchecked{}}; } inline constexpr bool Number::isnormal() const noexcept { auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_; return minMantissa <= abs_m && abs_m <= maxMantissa && minExponent <= exponent_ && exponent_ <= maxExponent; } inline constexpr Number abs(Number x) noexcept { if (x < Number{}) x = -x; return x; } // Returns f^n // Uses a log_2(n) number of multiplications Number power(Number const& f, unsigned n); // Returns f^(1/d) // Uses Newton–Raphson iterations until the result stops changing // to find the root of the polynomial g(x) = x^d - f Number root(Number f, unsigned d); Number root2(Number f); // Returns f^(n/d) Number power(Number const& f, unsigned n, unsigned d); // Return 0 if abs(x) < limit, else returns x inline constexpr Number squelch(Number const& x, Number const& limit) noexcept { if (abs(x) < limit) return Number{}; return x; } class saveNumberRoundMode { Number::rounding_mode mode_; public: ~saveNumberRoundMode() { Number::setround(mode_); } explicit saveNumberRoundMode(Number::rounding_mode mode) noexcept : mode_{mode} { } saveNumberRoundMode(saveNumberRoundMode const&) = delete; saveNumberRoundMode& operator=(saveNumberRoundMode const&) = delete; }; // saveNumberRoundMode doesn't do quite enough for us. What we want is a // Number::RoundModeGuard that sets the new mode and restores the old mode // when it leaves scope. Since Number doesn't have that facility, we'll // build it here. class NumberRoundModeGuard { saveNumberRoundMode saved_; public: explicit NumberRoundModeGuard(Number::rounding_mode mode) noexcept : saved_{Number::setround(mode)} { } NumberRoundModeGuard(NumberRoundModeGuard const&) = delete; NumberRoundModeGuard& operator=(NumberRoundModeGuard const&) = delete; }; } // namespace ripple #endif // XRPL_BASICS_NUMBER_H_INCLUDED