//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012, 2013 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ripple { namespace { // Use a static inside a function to help prevent order-of-initialzation issues LocalValue& getStaticSTAmountCanonicalizeSwitchover() { static LocalValue r{true}; return r; } } // namespace bool getSTAmountCanonicalizeSwitchover() { return *getStaticSTAmountCanonicalizeSwitchover(); } void setSTAmountCanonicalizeSwitchover(bool v) { *getStaticSTAmountCanonicalizeSwitchover() = v; } static const std::uint64_t tenTo14 = 100000000000000ull; static const std::uint64_t tenTo14m1 = tenTo14 - 1; static const std::uint64_t tenTo17 = tenTo14 * 1000; //------------------------------------------------------------------------------ static std::int64_t getSNValue(STAmount const& amount) { if (!amount.native()) Throw("amount is not native!"); auto ret = static_cast(amount.mantissa()); assert(static_cast(ret) == amount.mantissa()); if (amount.negative()) ret = -ret; return ret; } static bool areComparable(STAmount const& v1, STAmount const& v2) { return v1.native() == v2.native() && v1.issue().currency == v2.issue().currency; } STAmount::STAmount(SerialIter& sit, SField const& name) : STBase(name) { std::uint64_t value = sit.get64(); // native if ((value & cNotNative) == 0) { // positive if ((value & cPosNative) != 0) { mValue = value & ~cPosNative; mOffset = 0; mIsNative = true; mIsNegative = false; return; } // negative if (value == 0) Throw("negative zero is not canonical"); mValue = value; mOffset = 0; mIsNative = true; mIsNegative = true; return; } Issue issue; issue.currency = sit.get160(); if (isXRP(issue.currency)) Throw("invalid native currency"); issue.account = sit.get160(); if (isXRP(issue.account)) Throw("invalid native account"); // 10 bits for the offset, sign and "not native" flag int offset = static_cast(value >> (64 - 10)); value &= ~(1023ull << (64 - 10)); if (value) { bool isNegative = (offset & 256) == 0; offset = (offset & 255) - 97; // center the range if (value < cMinValue || value > cMaxValue || offset < cMinOffset || offset > cMaxOffset) { Throw("invalid currency value"); } mIssue = issue; mValue = value; mOffset = offset; mIsNegative = isNegative; canonicalize(); return; } if (offset != 512) Throw("invalid currency value"); mIssue = issue; mValue = 0; mOffset = 0; mIsNegative = false; canonicalize(); } STAmount::STAmount( SField const& name, Issue const& issue, mantissa_type mantissa, exponent_type exponent, bool native, bool negative, unchecked) : STBase(name) , mIssue(issue) , mValue(mantissa) , mOffset(exponent) , mIsNative(native) , mIsNegative(negative) { } STAmount::STAmount( Issue const& issue, mantissa_type mantissa, exponent_type exponent, bool native, bool negative, unchecked) : mIssue(issue) , mValue(mantissa) , mOffset(exponent) , mIsNative(native) , mIsNegative(negative) { } STAmount::STAmount( SField const& name, Issue const& issue, mantissa_type mantissa, exponent_type exponent, bool native, bool negative) : STBase(name) , mIssue(issue) , mValue(mantissa) , mOffset(exponent) , mIsNative(native) , mIsNegative(negative) { canonicalize(); } STAmount::STAmount(SField const& name, std::int64_t mantissa) : STBase(name), mOffset(0), mIsNative(true) { set(mantissa); } STAmount::STAmount(SField const& name, std::uint64_t mantissa, bool negative) : STBase(name) , mValue(mantissa) , mOffset(0) , mIsNative(true) , mIsNegative(negative) { assert(mValue <= std::numeric_limits::max()); } STAmount::STAmount( SField const& name, Issue const& issue, std::uint64_t mantissa, int exponent, bool negative) : STBase(name) , mIssue(issue) , mValue(mantissa) , mOffset(exponent) , mIsNegative(negative) { assert(mValue <= std::numeric_limits::max()); canonicalize(); } STAmount::STAmount(SField const& name, STAmount const& from) : STBase(name) , mIssue(from.mIssue) , mValue(from.mValue) , mOffset(from.mOffset) , mIsNegative(from.mIsNegative) { assert(mValue <= std::numeric_limits::max()); canonicalize(); } //------------------------------------------------------------------------------ STAmount::STAmount(std::uint64_t mantissa, bool negative) : mValue(mantissa) , mOffset(0) , mIsNative(true) , mIsNegative(mantissa != 0 && negative) { assert(mValue <= std::numeric_limits::max()); } STAmount::STAmount( Issue const& issue, std::uint64_t mantissa, int exponent, bool negative) : mIssue(issue), mValue(mantissa), mOffset(exponent), mIsNegative(negative) { canonicalize(); } STAmount::STAmount(Issue const& issue, std::int64_t mantissa, int exponent) : mIssue(issue), mOffset(exponent) { set(mantissa); canonicalize(); } STAmount::STAmount( Issue const& issue, std::uint32_t mantissa, int exponent, bool negative) : STAmount(issue, safe_cast(mantissa), exponent, negative) { } STAmount::STAmount(Issue const& issue, int mantissa, int exponent) : STAmount(issue, safe_cast(mantissa), exponent) { } // Legacy support for new-style amounts STAmount::STAmount(IOUAmount const& amount, Issue const& issue) : mIssue(issue) , mOffset(amount.exponent()) , mIsNative(false) , mIsNegative(amount < beast::zero) { if (mIsNegative) mValue = static_cast(-amount.mantissa()); else mValue = static_cast(amount.mantissa()); canonicalize(); } STAmount::STAmount(XRPAmount const& amount) : mOffset(0), mIsNative(true), mIsNegative(amount < beast::zero) { if (mIsNegative) mValue = unsafe_cast(-amount.drops()); else mValue = unsafe_cast(amount.drops()); canonicalize(); } std::unique_ptr STAmount::construct(SerialIter& sit, SField const& name) { return std::make_unique(sit, name); } STBase* STAmount::copy(std::size_t n, void* buf) const { return emplace(n, buf, *this); } STBase* STAmount::move(std::size_t n, void* buf) { return emplace(n, buf, std::move(*this)); } //------------------------------------------------------------------------------ // // Conversion // //------------------------------------------------------------------------------ XRPAmount STAmount::xrp() const { if (!mIsNative) Throw( "Cannot return non-native STAmount as XRPAmount"); auto drops = static_cast(mValue); if (mIsNegative) drops = -drops; return XRPAmount{drops}; } IOUAmount STAmount::iou() const { if (mIsNative) Throw("Cannot return native STAmount as IOUAmount"); auto mantissa = static_cast(mValue); auto exponent = mOffset; if (mIsNegative) mantissa = -mantissa; return {mantissa, exponent}; } STAmount& STAmount::operator=(IOUAmount const& iou) { assert(mIsNative == false); mOffset = iou.exponent(); mIsNegative = iou < beast::zero; if (mIsNegative) mValue = static_cast(-iou.mantissa()); else mValue = static_cast(iou.mantissa()); return *this; } //------------------------------------------------------------------------------ // // Operators // //------------------------------------------------------------------------------ STAmount& STAmount::operator+=(STAmount const& a) { *this = *this + a; return *this; } STAmount& STAmount::operator-=(STAmount const& a) { *this = *this - a; return *this; } STAmount operator+(STAmount const& v1, STAmount const& v2) { if (!areComparable(v1, v2)) Throw("Can't add amounts that are't comparable!"); if (v2 == beast::zero) return v1; if (v1 == beast::zero) { // Result must be in terms of v1 currency and issuer. return { v1.getFName(), v1.issue(), v2.mantissa(), v2.exponent(), v2.negative()}; } if (v1.native()) return {v1.getFName(), getSNValue(v1) + getSNValue(v2)}; if (getSTNumberSwitchover()) { auto x = v1; x = v1.iou() + v2.iou(); return x; } int ov1 = v1.exponent(), ov2 = v2.exponent(); std::int64_t vv1 = static_cast(v1.mantissa()); std::int64_t vv2 = static_cast(v2.mantissa()); if (v1.negative()) vv1 = -vv1; if (v2.negative()) vv2 = -vv2; while (ov1 < ov2) { vv1 /= 10; ++ov1; } while (ov2 < ov1) { vv2 /= 10; ++ov2; } // This addition cannot overflow an std::int64_t. It can overflow an // STAmount and the constructor will throw. std::int64_t fv = vv1 + vv2; if ((fv >= -10) && (fv <= 10)) return {v1.getFName(), v1.issue()}; if (fv >= 0) return STAmount{ v1.getFName(), v1.issue(), static_cast(fv), ov1, false}; return STAmount{ v1.getFName(), v1.issue(), static_cast(-fv), ov1, true}; } STAmount operator-(STAmount const& v1, STAmount const& v2) { return v1 + (-v2); } //------------------------------------------------------------------------------ std::uint64_t const STAmount::uRateOne = getRate(STAmount(1), STAmount(1)); void STAmount::setIssue(Issue const& issue) { mIssue = issue; mIsNative = isXRP(*this); } // Convert an offer into an index amount so they sort by rate. // A taker will take the best, lowest, rate first. // (e.g. a taker will prefer pay 1 get 3 over pay 1 get 2. // --> offerOut: takerGets: How much the offerer is selling to the taker. // --> offerIn: takerPays: How much the offerer is receiving from the taker. // <-- uRate: normalize(offerIn/offerOut) // A lower rate is better for the person taking the order. // The taker gets more for less with a lower rate. // Zero is returned if the offer is worthless. std::uint64_t getRate(STAmount const& offerOut, STAmount const& offerIn) { if (offerOut == beast::zero) return 0; try { STAmount r = divide(offerIn, offerOut, noIssue()); if (r == beast::zero) // offer is too good return 0; assert((r.exponent() >= -100) && (r.exponent() <= 155)); std::uint64_t ret = r.exponent() + 100; return (ret << (64 - 8)) | r.mantissa(); } catch (std::exception const&) { } // overflow -- very bad offer return 0; } void STAmount::setJson(Json::Value& elem) const { elem = Json::objectValue; if (!mIsNative) { // It is an error for currency or issuer not to be specified for valid // json. elem[jss::value] = getText(); elem[jss::currency] = to_string(mIssue.currency); elem[jss::issuer] = to_string(mIssue.account); } else { elem = getText(); } } //------------------------------------------------------------------------------ // // STBase // //------------------------------------------------------------------------------ SerializedTypeID STAmount::getSType() const { return STI_AMOUNT; } std::string STAmount::getFullText() const { std::string ret; ret.reserve(64); ret = getText() + "/" + mIssue.getText(); return ret; } std::string STAmount::getText() const { // keep full internal accuracy, but make more human friendly if posible if (*this == beast::zero) return "0"; std::string const raw_value(std::to_string(mValue)); std::string ret; if (mIsNegative) ret.append(1, '-'); bool const scientific( (mOffset != 0) && ((mOffset < -25) || (mOffset > -5))); if (mIsNative || scientific) { ret.append(raw_value); if (scientific) { ret.append(1, 'e'); ret.append(std::to_string(mOffset)); } return ret; } assert(mOffset + 43 > 0); size_t const pad_prefix = 27; size_t const pad_suffix = 23; std::string val; val.reserve(raw_value.length() + pad_prefix + pad_suffix); val.append(pad_prefix, '0'); val.append(raw_value); val.append(pad_suffix, '0'); size_t const offset(mOffset + 43); auto pre_from(val.begin()); auto const pre_to(val.begin() + offset); auto const post_from(val.begin() + offset); auto post_to(val.end()); // Crop leading zeroes. Take advantage of the fact that there's always a // fixed amount of leading zeroes and skip them. if (std::distance(pre_from, pre_to) > pad_prefix) pre_from += pad_prefix; assert(post_to >= post_from); pre_from = std::find_if(pre_from, pre_to, [](char c) { return c != '0'; }); // Crop trailing zeroes. Take advantage of the fact that there's always a // fixed amount of trailing zeroes and skip them. if (std::distance(post_from, post_to) > pad_suffix) post_to -= pad_suffix; assert(post_to >= post_from); post_to = std::find_if( std::make_reverse_iterator(post_to), std::make_reverse_iterator(post_from), [](char c) { return c != '0'; }) .base(); // Assemble the output: if (pre_from == pre_to) ret.append(1, '0'); else ret.append(pre_from, pre_to); if (post_to != post_from) { ret.append(1, '.'); ret.append(post_from, post_to); } return ret; } Json::Value STAmount::getJson(JsonOptions) const { Json::Value elem; setJson(elem); return elem; } void STAmount::add(Serializer& s) const { if (mIsNative) { assert(mOffset == 0); if (!mIsNegative) s.add64(mValue | cPosNative); else s.add64(mValue); } else { if (*this == beast::zero) s.add64(cNotNative); else if (mIsNegative) // 512 = not native s.add64( mValue | (static_cast(mOffset + 512 + 97) << (64 - 10))); else // 256 = positive s.add64( mValue | (static_cast(mOffset + 512 + 256 + 97) << (64 - 10))); s.addBitString(mIssue.currency); s.addBitString(mIssue.account); } } bool STAmount::isEquivalent(const STBase& t) const { const STAmount* v = dynamic_cast(&t); return v && (*v == *this); } bool STAmount::isDefault() const { return (mValue == 0) && mIsNative; } //------------------------------------------------------------------------------ // amount = mValue * [10 ^ mOffset] // Representation range is 10^80 - 10^(-80). // // On the wire: // - high bit is 0 for XRP, 1 for issued currency // - next bit is 1 for positive, 0 for negative (except 0 issued currency, which // is a special case of 0x8000000000000000 // - for issued currencies, the next 8 bits are (mOffset+97). // The +97 is so that this value is always positive. // - The remaining bits are significant digits (mantissa) // That's 54 bits for issued currency and 62 bits for native // (but XRP only needs 57 bits for the max value of 10^17 drops) // // mValue is zero if the amount is zero, otherwise it's within the range // 10^15 to (10^16 - 1) inclusive. // mOffset is in the range -96 to +80. void STAmount::canonicalize() { if (isXRP(*this)) { // native currency amounts should always have an offset of zero mIsNative = true; // log(2^64,10) ~ 19.2 if (mValue == 0 || mOffset <= -20) { mValue = 0; mOffset = 0; mIsNegative = false; return; } if (getSTAmountCanonicalizeSwitchover()) { // log(cMaxNativeN, 10) == 17 if (mOffset > 17) Throw( "Native currency amount out of range"); } if (getSTNumberSwitchover() && getSTAmountCanonicalizeSwitchover()) { Number num( mIsNegative ? -mValue : mValue, mOffset, Number::unchecked{}); XRPAmount xrp{num}; mIsNegative = xrp.drops() < 0; mValue = mIsNegative ? -xrp.drops() : xrp.drops(); mOffset = 0; } else { while (mOffset < 0) { mValue /= 10; ++mOffset; } while (mOffset > 0) { if (getSTAmountCanonicalizeSwitchover()) { // N.B. do not move the overflow check to after the // multiplication if (mValue > cMaxNativeN) Throw( "Native currency amount out of range"); } mValue *= 10; --mOffset; } } if (mValue > cMaxNativeN) Throw("Native currency amount out of range"); return; } mIsNative = false; if (getSTNumberSwitchover()) { *this = iou(); return; } if (mValue == 0) { mOffset = -100; mIsNegative = false; return; } while ((mValue < cMinValue) && (mOffset > cMinOffset)) { mValue *= 10; --mOffset; } while (mValue > cMaxValue) { if (mOffset >= cMaxOffset) Throw("value overflow"); mValue /= 10; ++mOffset; } if ((mOffset < cMinOffset) || (mValue < cMinValue)) { mValue = 0; mIsNegative = false; mOffset = -100; return; } if (mOffset > cMaxOffset) Throw("value overflow"); assert((mValue == 0) || ((mValue >= cMinValue) && (mValue <= cMaxValue))); assert( (mValue == 0) || ((mOffset >= cMinOffset) && (mOffset <= cMaxOffset))); assert((mValue != 0) || (mOffset != -100)); } void STAmount::set(std::int64_t v) { if (v < 0) { mIsNegative = true; mValue = static_cast(-v); } else { mIsNegative = false; mValue = static_cast(v); } } //------------------------------------------------------------------------------ STAmount amountFromQuality(std::uint64_t rate) { if (rate == 0) return STAmount(noIssue()); std::uint64_t mantissa = rate & ~(255ull << (64 - 8)); int exponent = static_cast(rate >> (64 - 8)) - 100; return STAmount(noIssue(), mantissa, exponent); } STAmount amountFromString(Issue const& issue, std::string const& amount) { static boost::regex const reNumber( "^" // the beginning of the string "([-+]?)" // (optional) + or - character "(0|[1-9][0-9]*)" // a number (no leading zeroes, unless 0) "(\\.([0-9]+))?" // (optional) period followed by any number "([eE]([+-]?)([0-9]+))?" // (optional) E, optional + or -, any number "$", boost::regex_constants::optimize); boost::smatch match; if (!boost::regex_match(amount, match, reNumber)) Throw("Number '" + amount + "' is not valid"); // Match fields: // 0 = whole input // 1 = sign // 2 = integer portion // 3 = whole fraction (with '.') // 4 = fraction (without '.') // 5 = whole exponent (with 'e') // 6 = exponent sign // 7 = exponent number // CHECKME: Why 32? Shouldn't this be 16? if ((match[2].length() + match[4].length()) > 32) Throw("Number '" + amount + "' is overlong"); bool negative = (match[1].matched && (match[1] == "-")); // Can't specify XRP using fractional representation if (isXRP(issue) && match[3].matched) Throw("XRP must be specified in integral drops."); std::uint64_t mantissa; int exponent; if (!match[4].matched) // integer only { mantissa = beast::lexicalCastThrow(std::string(match[2])); exponent = 0; } else { // integer and fraction mantissa = beast::lexicalCastThrow(match[2] + match[4]); exponent = -(match[4].length()); } if (match[5].matched) { // we have an exponent if (match[6].matched && (match[6] == "-")) exponent -= beast::lexicalCastThrow(std::string(match[7])); else exponent += beast::lexicalCastThrow(std::string(match[7])); } return {issue, mantissa, exponent, negative}; } STAmount amountFromJson(SField const& name, Json::Value const& v) { STAmount::mantissa_type mantissa = 0; STAmount::exponent_type exponent = 0; bool negative = false; Issue issue; Json::Value value; Json::Value currency; Json::Value issuer; if (v.isNull()) { Throw( "XRP may not be specified with a null Json value"); } else if (v.isObject()) { value = v[jss::value]; currency = v[jss::currency]; issuer = v[jss::issuer]; } else if (v.isArray()) { value = v.get(Json::UInt(0), 0); currency = v.get(Json::UInt(1), Json::nullValue); issuer = v.get(Json::UInt(2), Json::nullValue); } else if (v.isString()) { std::string val = v.asString(); std::vector elements; boost::split(elements, val, boost::is_any_of("\t\n\r ,/")); if (elements.size() > 3) Throw("invalid amount string"); value = elements[0]; if (elements.size() > 1) currency = elements[1]; if (elements.size() > 2) issuer = elements[2]; } else { value = v; } bool const native = !currency.isString() || currency.asString().empty() || (currency.asString() == systemCurrencyCode()); if (native) { if (v.isObjectOrNull()) Throw("XRP may not be specified as an object"); issue = xrpIssue(); } else { // non-XRP if (!to_currency(issue.currency, currency.asString())) Throw("invalid currency"); if (!issuer.isString() || !to_issuer(issue.account, issuer.asString())) Throw("invalid issuer"); if (isXRP(issue.currency)) Throw("invalid issuer"); } if (value.isInt()) { if (value.asInt() >= 0) { mantissa = value.asInt(); } else { mantissa = -value.asInt(); negative = true; } } else if (value.isUInt()) { mantissa = v.asUInt(); } else if (value.isString()) { auto const ret = amountFromString(issue, value.asString()); mantissa = ret.mantissa(); exponent = ret.exponent(); negative = ret.negative(); } else { Throw("invalid amount type"); } return {name, issue, mantissa, exponent, native, negative}; } bool amountFromJsonNoThrow(STAmount& result, Json::Value const& jvSource) { try { result = amountFromJson(sfGeneric, jvSource); return true; } catch (const std::exception& e) { JLOG(debugLog().warn()) << "amountFromJsonNoThrow: caught: " << e.what(); } return false; } //------------------------------------------------------------------------------ // // Operators // //------------------------------------------------------------------------------ bool operator==(STAmount const& lhs, STAmount const& rhs) { return areComparable(lhs, rhs) && lhs.negative() == rhs.negative() && lhs.exponent() == rhs.exponent() && lhs.mantissa() == rhs.mantissa(); } bool operator<(STAmount const& lhs, STAmount const& rhs) { if (!areComparable(lhs, rhs)) Throw( "Can't compare amounts that are't comparable!"); if (lhs.negative() != rhs.negative()) return lhs.negative(); if (lhs.mantissa() == 0) { if (rhs.negative()) return false; return rhs.mantissa() != 0; } // We know that lhs is non-zero and both sides have the same sign. Since // rhs is zero (and thus not negative), lhs must, therefore, be strictly // greater than zero. So if rhs is zero, the comparison must be false. if (rhs.mantissa() == 0) return false; if (lhs.exponent() > rhs.exponent()) return lhs.negative(); if (lhs.exponent() < rhs.exponent()) return !lhs.negative(); if (lhs.mantissa() > rhs.mantissa()) return lhs.negative(); if (lhs.mantissa() < rhs.mantissa()) return !lhs.negative(); return false; } STAmount operator-(STAmount const& value) { if (value.mantissa() == 0) return value; return STAmount( value.getFName(), value.issue(), value.mantissa(), value.exponent(), value.native(), !value.negative(), STAmount::unchecked{}); } //------------------------------------------------------------------------------ // // Arithmetic // //------------------------------------------------------------------------------ // Calculate (a * b) / c when all three values are 64-bit // without loss of precision: static std::uint64_t muldiv( std::uint64_t multiplier, std::uint64_t multiplicand, std::uint64_t divisor) { boost::multiprecision::uint128_t ret; boost::multiprecision::multiply(ret, multiplier, multiplicand); ret /= divisor; if (ret > std::numeric_limits::max()) { Throw( "overflow: (" + std::to_string(multiplier) + " * " + std::to_string(multiplicand) + ") / " + std::to_string(divisor)); } return static_cast(ret); } static std::uint64_t muldiv_round( std::uint64_t multiplier, std::uint64_t multiplicand, std::uint64_t divisor, std::uint64_t rounding) { boost::multiprecision::uint128_t ret; boost::multiprecision::multiply(ret, multiplier, multiplicand); ret += rounding; ret /= divisor; if (ret > std::numeric_limits::max()) { Throw( "overflow: ((" + std::to_string(multiplier) + " * " + std::to_string(multiplicand) + ") + " + std::to_string(rounding) + ") / " + std::to_string(divisor)); } return static_cast(ret); } STAmount divide(STAmount const& num, STAmount const& den, Issue const& issue) { if (den == beast::zero) Throw("division by zero"); if (num == beast::zero) return {issue}; std::uint64_t numVal = num.mantissa(); std::uint64_t denVal = den.mantissa(); int numOffset = num.exponent(); int denOffset = den.exponent(); if (num.native()) { while (numVal < STAmount::cMinValue) { // Need to bring into range numVal *= 10; --numOffset; } } if (den.native()) { while (denVal < STAmount::cMinValue) { denVal *= 10; --denOffset; } } // We divide the two mantissas (each is between 10^15 // and 10^16). To maintain precision, we multiply the // numerator by 10^17 (the product is in the range of // 10^32 to 10^33) followed by a division, so the result // is in the range of 10^16 to 10^15. return STAmount( issue, muldiv(numVal, tenTo17, denVal) + 5, numOffset - denOffset - 17, num.negative() != den.negative()); } STAmount multiply(STAmount const& v1, STAmount const& v2, Issue const& issue) { if (v1 == beast::zero || v2 == beast::zero) return STAmount(issue); if (v1.native() && v2.native() && isXRP(issue)) { std::uint64_t const minV = getSNValue(v1) < getSNValue(v2) ? getSNValue(v1) : getSNValue(v2); std::uint64_t const maxV = getSNValue(v1) < getSNValue(v2) ? getSNValue(v2) : getSNValue(v1); if (minV > 3000000000ull) // sqrt(cMaxNative) Throw("Native value overflow"); if (((maxV >> 32) * minV) > 2095475792ull) // cMaxNative / 2^32 Throw("Native value overflow"); return STAmount(v1.getFName(), minV * maxV); } if (getSTNumberSwitchover()) return {IOUAmount{Number{v1} * Number{v2}}, issue}; std::uint64_t value1 = v1.mantissa(); std::uint64_t value2 = v2.mantissa(); int offset1 = v1.exponent(); int offset2 = v2.exponent(); if (v1.native()) { while (value1 < STAmount::cMinValue) { value1 *= 10; --offset1; } } if (v2.native()) { while (value2 < STAmount::cMinValue) { value2 *= 10; --offset2; } } // We multiply the two mantissas (each is between 10^15 // and 10^16), so their product is in the 10^30 to 10^32 // range. Dividing their product by 10^14 maintains the // precision, by scaling the result to 10^16 to 10^18. return STAmount( issue, muldiv(value1, value2, tenTo14) + 7, offset1 + offset2 + 14, v1.negative() != v2.negative()); } // This is the legacy version of canonicalizeRound. It's been in use // for years, so it is deeply embedded in the behavior of cross-currency // transactions. // // However in 2022 it was noticed that the rounding characteristics were // surprising. When the code converts from IOU-like to XRP-like there may // be a fraction of the IOU-like representation that is too small to be // represented in drops. `canonicalizeRound()` currently does some unusual // rounding. // // 1. If the fractional part is greater than or equal to 0.1, then the // number of drops is rounded up. // // 2. However, if the fractional part is less than 0.1 (for example, // 0.099999), then the number of drops is rounded down. // // The XRP Ledger has this rounding behavior baked in. But there are // situations where this rounding behavior led to undesirable outcomes. // So an alternative rounding approach was introduced. You'll see that // alternative below. static void canonicalizeRound(bool native, std::uint64_t& value, int& offset, bool) { if (native) { if (offset < 0) { int loops = 0; while (offset < -1) { value /= 10; ++offset; ++loops; } value += (loops >= 2) ? 9 : 10; // add before last divide value /= 10; ++offset; } } else if (value > STAmount::cMaxValue) { while (value > (10 * STAmount::cMaxValue)) { value /= 10; ++offset; } value += 9; // add before last divide value /= 10; ++offset; } } // The original canonicalizeRound did not allow the rounding direction to // be specified. It also ignored some of the bits that could contribute to // rounding decisions. canonicalizeRoundStrict() tracks all of the bits in // the value being rounded. static void canonicalizeRoundStrict( bool native, std::uint64_t& value, int& offset, bool roundUp) { if (native) { if (offset < 0) { bool hadRemainder = false; while (offset < -1) { // It would be better to use std::lldiv than to separately // compute the remainder. But std::lldiv does not support // unsigned arguments. std::uint64_t const newValue = value / 10; hadRemainder |= (value != (newValue * 10)); value = newValue; ++offset; } value += (hadRemainder && roundUp) ? 10 : 9; // Add before last divide value /= 10; ++offset; } } else if (value > STAmount::cMaxValue) { while (value > (10 * STAmount::cMaxValue)) { value /= 10; ++offset; } value += 9; // add before last divide value /= 10; ++offset; } } namespace { // We need a class that has an interface similar to NumberRoundModeGuard // but does nothing. class DontAffectNumberRoundMode { public: explicit DontAffectNumberRoundMode(Number::rounding_mode mode) noexcept { } DontAffectNumberRoundMode(DontAffectNumberRoundMode const&) = delete; DontAffectNumberRoundMode& operator=(DontAffectNumberRoundMode const&) = delete; }; } // anonymous namespace // Pass the canonicalizeRound function pointer as a template parameter. // // We might need to use NumberRoundModeGuard. Allow the caller // to pass either that or a replacement as a template parameter. template < void (*CanonicalizeFunc)(bool, std::uint64_t&, int&, bool), typename MightSaveRound> static STAmount mulRoundImpl( STAmount const& v1, STAmount const& v2, Issue const& issue, bool roundUp) { if (v1 == beast::zero || v2 == beast::zero) return {issue}; bool const xrp = isXRP(issue); if (v1.native() && v2.native() && xrp) { std::uint64_t minV = (getSNValue(v1) < getSNValue(v2)) ? getSNValue(v1) : getSNValue(v2); std::uint64_t maxV = (getSNValue(v1) < getSNValue(v2)) ? getSNValue(v2) : getSNValue(v1); if (minV > 3000000000ull) // sqrt(cMaxNative) Throw("Native value overflow"); if (((maxV >> 32) * minV) > 2095475792ull) // cMaxNative / 2^32 Throw("Native value overflow"); return STAmount(v1.getFName(), minV * maxV); } std::uint64_t value1 = v1.mantissa(), value2 = v2.mantissa(); int offset1 = v1.exponent(), offset2 = v2.exponent(); if (v1.native()) { while (value1 < STAmount::cMinValue) { value1 *= 10; --offset1; } } if (v2.native()) { while (value2 < STAmount::cMinValue) { value2 *= 10; --offset2; } } bool const resultNegative = v1.negative() != v2.negative(); // We multiply the two mantissas (each is between 10^15 // and 10^16), so their product is in the 10^30 to 10^32 // range. Dividing their product by 10^14 maintains the // precision, by scaling the result to 10^16 to 10^18. // // If the we're rounding up, we want to round up away // from zero, and if we're rounding down, truncation // is implicit. std::uint64_t amount = muldiv_round( value1, value2, tenTo14, (resultNegative != roundUp) ? tenTo14m1 : 0); int offset = offset1 + offset2 + 14; if (resultNegative != roundUp) { CanonicalizeFunc(xrp, amount, offset, roundUp); } STAmount result = [&]() { // If appropriate, tell Number to round down. This gives the desired // result from STAmount::canonicalize. MightSaveRound const savedRound(Number::towards_zero); return STAmount(issue, amount, offset, resultNegative); }(); if (roundUp && !resultNegative && !result) { if (xrp) { // return the smallest value above zero amount = 1; offset = 0; } else { // return the smallest value above zero amount = STAmount::cMinValue; offset = STAmount::cMinOffset; } return STAmount(issue, amount, offset, resultNegative); } return result; } STAmount mulRound( STAmount const& v1, STAmount const& v2, Issue const& issue, bool roundUp) { return mulRoundImpl( v1, v2, issue, roundUp); } STAmount mulRoundStrict( STAmount const& v1, STAmount const& v2, Issue const& issue, bool roundUp) { return mulRoundImpl( v1, v2, issue, roundUp); } // We might need to use NumberRoundModeGuard. Allow the caller // to pass either that or a replacement as a template parameter. template static STAmount divRoundImpl( STAmount const& num, STAmount const& den, Issue const& issue, bool roundUp) { if (den == beast::zero) Throw("division by zero"); if (num == beast::zero) return {issue}; std::uint64_t numVal = num.mantissa(), denVal = den.mantissa(); int numOffset = num.exponent(), denOffset = den.exponent(); if (num.native()) { while (numVal < STAmount::cMinValue) { numVal *= 10; --numOffset; } } if (den.native()) { while (denVal < STAmount::cMinValue) { denVal *= 10; --denOffset; } } bool const resultNegative = (num.negative() != den.negative()); // We divide the two mantissas (each is between 10^15 // and 10^16). To maintain precision, we multiply the // numerator by 10^17 (the product is in the range of // 10^32 to 10^33) followed by a division, so the result // is in the range of 10^16 to 10^15. // // We round away from zero if we're rounding up or // truncate if we're rounding down. std::uint64_t amount = muldiv_round( numVal, tenTo17, denVal, (resultNegative != roundUp) ? denVal - 1 : 0); int offset = numOffset - denOffset - 17; if (resultNegative != roundUp) canonicalizeRound(isXRP(issue), amount, offset, roundUp); STAmount result = [&]() { // If appropriate, tell Number the rounding mode we are using. // Note that "roundUp == true" actually means "round away from zero". // Otherwise round toward zero. using enum Number::rounding_mode; MightSaveRound const savedRound( roundUp ^ resultNegative ? upward : downward); return STAmount(issue, amount, offset, resultNegative); }(); if (roundUp && !resultNegative && !result) { if (isXRP(issue)) { // return the smallest value above zero amount = 1; offset = 0; } else { // return the smallest value above zero amount = STAmount::cMinValue; offset = STAmount::cMinOffset; } return STAmount(issue, amount, offset, resultNegative); } return result; } STAmount divRound( STAmount const& num, STAmount const& den, Issue const& issue, bool roundUp) { return divRoundImpl(num, den, issue, roundUp); } STAmount divRoundStrict( STAmount const& num, STAmount const& den, Issue const& issue, bool roundUp) { return divRoundImpl(num, den, issue, roundUp); } } // namespace ripple