//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2016 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef RIPPLE_CONDITIONS_UTILS_H #define RIPPLE_CONDITIONS_UTILS_H #include #include #include #include #include #include #include #include #include #include namespace ripple { namespace cryptoconditions { // A collection of functions to decode binary blobs // encoded with X.690 Distinguished Encoding Rules. // // This is a very trivial decoder and only implements // the bare minimum needed to support PreimageSha256. namespace der { // The preamble encapsulates the DER identifier and // length octets: struct Preamble { explicit Preamble() = default; std::uint8_t type = 0; std::size_t tag = 0; std::size_t length = 0; }; inline bool isPrimitive(Preamble const& p) { return (p.type & 0x20) == 0; } inline bool isConstructed(Preamble const& p) { return !isPrimitive(p); } inline bool isUniversal(Preamble const& p) { return (p.type & 0xC0) == 0; } inline bool isApplication(Preamble const& p) { return (p.type & 0xC0) == 0x40; } inline bool isContextSpecific(Preamble const& p) { return (p.type & 0xC0) == 0x80; } inline bool isPrivate(Preamble const& p) { return (p.type & 0xC0) == 0xC0; } inline Preamble parsePreamble(Slice& s, std::error_code& ec) { Preamble p; if (s.size() < 2) { ec = error::short_preamble; return p; } p.type = s[0] & 0xE0; p.tag = s[0] & 0x1F; s += 1; if (p.tag == 0x1F) { // Long tag form, which we do not support: ec = error::long_tag; return p; } p.length = s[0]; s += 1; if (p.length & 0x80) { // Long form length: std::size_t const cnt = p.length & 0x7F; if (cnt == 0) { ec = error::malformed_encoding; return p; } if (cnt > sizeof(std::size_t)) { ec = error::large_size; return p; } if (cnt > s.size()) { ec = error::short_preamble; return p; } p.length = 0; for (std::size_t i = 0; i != cnt; ++i) p.length = (p.length << 8) + s[i]; s += cnt; if (p.length == 0) { ec = error::malformed_encoding; return p; } } return p; } inline Buffer parseOctetString(Slice& s, std::uint32_t count, std::error_code& ec) { if (count > s.size()) { ec = error::buffer_underfull; return {}; } if (count > 65535) { ec = error::large_size; return {}; } Buffer b(s.data(), count); s += count; return b; } template Integer parseInteger(Slice& s, std::size_t count, std::error_code& ec) { Integer v{0}; if (s.empty()) { // can never have zero sized integers ec = error::malformed_encoding; return v; } if (count > s.size()) { ec = error::buffer_underfull; return v; } const bool isSigned = std::numeric_limits::is_signed; // unsigned types may have a leading zero octet const size_t maxLength = isSigned ? sizeof(Integer) : sizeof(Integer) + 1; if (count > maxLength) { ec = error::large_size; return v; } if (!isSigned && (s[0] & (1 << 7))) { // trying to decode a negative number into a positive value ec = error::malformed_encoding; return v; } if (!isSigned && count == sizeof(Integer) + 1 && s[0]) { // since integers are coded as two's complement, the first byte may // be zero for unsigned reps ec = error::malformed_encoding; return v; } v = 0; for (size_t i = 0; i < count; ++i) v = (v << 8) | (s[i] & 0xff); if (isSigned && (s[0] & (1 << 7))) { for (int i = count; i < sizeof(Integer); ++i) v |= (Integer(0xff) << (8 * i)); } s += count; return v; } } // der } // cryptoconditions } // ripple #endif