//------------------------------------------------------------------------------ /* This file is part of Beast: https://github.com/vinniefalco/Beast Copyright 2013, Vinnie Falco Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef BEAST_CONTAINER_AGED_ORDERED_CONTAINER_H_INCLUDED #define BEAST_CONTAINER_AGED_ORDERED_CONTAINER_H_INCLUDED #include #include #include #include #include #include #include #include // #include #include #include #include #include // #include namespace beast { namespace detail { // Traits templates used to discern reverse_iterators, which are disallowed // for mutating operations. template struct is_boost_reverse_iterator : std::false_type {}; template struct is_boost_reverse_iterator> : std::true_type {}; /** Associative container where each element is also indexed by time. This container mirrors the interface of the standard library ordered associative containers, with the addition that each element is associated with a `when` `time_point` which is obtained from the value of the clock's `now`. The function `touch` updates the time for an element to the current time as reported by the clock. An extra set of iterator types and member functions are provided in the `chronological` memberspace that allow traversal in temporal or reverse temporal order. This container is useful as a building block for caches whose items expire after a certain amount of time. The chronological iterators allow for fully customizable expiration strategies. @see aged_set, aged_multiset, aged_map, aged_multimap */ template < bool IsMulti, bool IsMap, class Key, class T, class Duration = std::chrono::seconds, class Compare = std::less , class Allocator = std::allocator < typename std::conditional , Key>::type> > class aged_ordered_container { public: typedef abstract_clock clock_type; typedef typename clock_type::time_point time_point; typedef typename clock_type::duration duration; typedef Key key_type; typedef T mapped_type; typedef typename std::conditional < IsMap, std::pair , Key>::type value_type; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; // Introspection (for unit tests) typedef std::false_type is_unordered; typedef std::integral_constant is_multi; typedef std::integral_constant is_map; // VFALCO TODO How can we reorder the declarations to keep // all the public things together contiguously? private: static Key const& extract (value_type const& value) { return aged_associative_container_extract_t () (value); } // VFALCO TODO hoist to remove template argument dependencies struct element : boost::intrusive::set_base_hook < boost::intrusive::link_mode < boost::intrusive::normal_link> > , boost::intrusive::list_base_hook < boost::intrusive::link_mode < boost::intrusive::normal_link> > { // Stash types here so the iterator doesn't // need to see the container declaration. struct stashed { typedef typename aged_ordered_container::value_type value_type; typedef typename aged_ordered_container::time_point time_point; }; element ( time_point const& when_, value_type const& value_) : value (value_) , when (when_) { } element ( time_point const& when_, value_type&& value_) : value (std::move (value_)) , when (when_) { } template < class... Args, class = typename std::enable_if < std::is_constructible ::value>::type > element (time_point const& when_, Args&&... args) : value (std::forward (args)...) , when (when_) { } value_type value; time_point when; }; // VFALCO TODO This should only be enabled for maps. class pair_value_compare : private empty_base_optimization , public std::binary_function { public: bool operator() (value_type const& lhs, value_type const& rhs) const { return this->member() (lhs.first, rhs.first); } pair_value_compare () { } pair_value_compare (pair_value_compare const& other) : empty_base_optimization (other) { } private: friend aged_ordered_container; pair_value_compare (Compare const& compare) : empty_base_optimization (compare) { } }; // Compares value_type against element, used in insert_check // VFALCO TODO hoist to remove template argument dependencies class KeyValueCompare : private empty_base_optimization , public std::binary_function { public: KeyValueCompare () { } KeyValueCompare (Compare const& compare) : empty_base_optimization (compare) { } // VFALCO NOTE WE might want only to enable these overloads // if Compare has is_transparent #if 0 template bool operator() (K const& k, element const& e) const { return this->member() (k, extract (e.value)); } template bool operator() (element const& e, K const& k) const { return this->member() (extract (e.value), k); } #endif bool operator() (Key const& k, element const& e) const { return this->member() (k, extract (e.value)); } bool operator() (element const& e, Key const& k) const { return this->member() (extract (e.value), k); } Compare& compare() { return empty_base_optimization ::member(); } Compare const& compare() const { return empty_base_optimization ::member(); } }; typedef typename boost::intrusive::make_list >::type list_type; typedef typename std::conditional < IsMulti, typename boost::intrusive::make_multiset >::type, typename boost::intrusive::make_set >::type >::type cont_type; typedef typename std::allocator_traits < Allocator>::template rebind_alloc ElementAllocator; using ElementAllocatorTraits = std::allocator_traits ; class config_t : private KeyValueCompare , private empty_base_optimization { public: explicit config_t ( clock_type& clock_) : clock (clock_) { } config_t ( clock_type& clock_, Compare const& comp) : KeyValueCompare (comp) , clock (clock_) { } config_t ( clock_type& clock_, Allocator const& alloc_) : empty_base_optimization (alloc_) , clock (clock_) { } config_t ( clock_type& clock_, Compare const& comp, Allocator const& alloc_) : KeyValueCompare (comp) , empty_base_optimization (alloc_) , clock (clock_) { } config_t (config_t const& other) : KeyValueCompare (other.key_compare()) , empty_base_optimization ( ElementAllocatorTraits:: select_on_container_copy_construction ( other.alloc())) , clock (other.clock) { } config_t (config_t const& other, Allocator const& alloc) : KeyValueCompare (other.key_compare()) , empty_base_optimization (alloc) , clock (other.clock) { } config_t (config_t&& other) : KeyValueCompare (std::move (other.key_compare())) , empty_base_optimization ( std::move (other)) , clock (other.clock) { } config_t (config_t&& other, Allocator const& alloc) : KeyValueCompare (std::move (other.key_compare())) , empty_base_optimization (alloc) , clock (other.clock) { } config_t& operator= (config_t const& other) { if (this != &other) { compare() = other.compare(); alloc() = other.alloc(); clock = other.clock; } return *this; } config_t& operator= (config_t&& other) { compare() = std::move (other.compare()); alloc() = std::move (other.alloc()); clock = other.clock; return *this; } Compare& compare () { return KeyValueCompare::compare(); } Compare const& compare () const { return KeyValueCompare::compare(); } KeyValueCompare& key_compare() { return *this; } KeyValueCompare const& key_compare() const { return *this; } ElementAllocator& alloc() { return empty_base_optimization < ElementAllocator>::member(); } ElementAllocator const& alloc() const { return empty_base_optimization < ElementAllocator>::member(); } std::reference_wrapper clock; }; template element* new_element (Args&&... args) { struct Deleter { std::reference_wrapper a_; Deleter (ElementAllocator& a) : a_(a) { } void operator()(element* p) { ElementAllocatorTraits::deallocate (a_.get(), p, 1); } }; std::unique_ptr p (ElementAllocatorTraits::allocate ( m_config.alloc(), 1), Deleter(m_config.alloc())); ElementAllocatorTraits::construct (m_config.alloc(), p.get(), clock().now(), std::forward (args)...); return p.release(); } void delete_element (element const* p) { ElementAllocatorTraits::destroy (m_config.alloc(), p); ElementAllocatorTraits::deallocate ( m_config.alloc(), const_cast(p), 1); } void unlink_and_delete_element (element const* p) { chronological.list.erase ( chronological.list.iterator_to (*p)); m_cont.erase (m_cont.iterator_to (*p)); delete_element (p); } public: typedef Compare key_compare; typedef typename std::conditional < IsMap, pair_value_compare, Compare>::type value_compare; typedef Allocator allocator_type; typedef value_type& reference; typedef value_type const& const_reference; typedef typename std::allocator_traits < Allocator>::pointer pointer; typedef typename std::allocator_traits < Allocator>::const_pointer const_pointer; // A set (that is, !IsMap) iterator is aways const because the elements // of a set are immutable. typedef detail::aged_container_iterator iterator; typedef detail::aged_container_iterator const_iterator; typedef detail::aged_container_iterator reverse_iterator; typedef detail::aged_container_iterator const_reverse_iterator; //-------------------------------------------------------------------------- // // Chronological ordered iterators // // "Memberspace" // http://accu.org/index.php/journals/1527 // //-------------------------------------------------------------------------- class chronological_t { public: // A set (that is, !IsMap) iterator is aways const because the elements // of a set are immutable. typedef detail::aged_container_iterator iterator; typedef detail::aged_container_iterator const_iterator; typedef detail::aged_container_iterator reverse_iterator; typedef detail::aged_container_iterator const_reverse_iterator; iterator begin () { return iterator (list.begin()); } const_iterator begin () const { return const_iterator (list.begin ()); } const_iterator cbegin() const { return const_iterator (list.begin ()); } iterator end () { return iterator (list.end ()); } const_iterator end () const { return const_iterator (list.end ()); } const_iterator cend () const { return const_iterator (list.end ()); } reverse_iterator rbegin () { return reverse_iterator (list.rbegin()); } const_reverse_iterator rbegin () const { return const_reverse_iterator (list.rbegin ()); } const_reverse_iterator crbegin() const { return const_reverse_iterator (list.rbegin ()); } reverse_iterator rend () { return reverse_iterator (list.rend ()); } const_reverse_iterator rend () const { return const_reverse_iterator (list.rend ()); } const_reverse_iterator crend () const { return const_reverse_iterator (list.rend ()); } iterator iterator_to (value_type& value) { static_assert (std::is_standard_layout ::value, "must be standard layout"); return list.iterator_to (*reinterpret_cast ( reinterpret_cast(&value)-((std::size_t) std::addressof(((element*)0)->member)))); } const_iterator iterator_to (value_type const& value) const { static_assert (std::is_standard_layout ::value, "must be standard layout"); return list.iterator_to (*reinterpret_cast ( reinterpret_cast(&value)-((std::size_t) std::addressof(((element*)0)->member)))); } private: chronological_t () { } chronological_t (chronological_t const&) = delete; chronological_t (chronological_t&&) = delete; friend class aged_ordered_container; list_type mutable list; } chronological; //-------------------------------------------------------------------------- // // Construction // //-------------------------------------------------------------------------- explicit aged_ordered_container (clock_type& clock); aged_ordered_container (clock_type& clock, Compare const& comp); aged_ordered_container (clock_type& clock, Allocator const& alloc); aged_ordered_container (clock_type& clock, Compare const& comp, Allocator const& alloc); template aged_ordered_container (InputIt first, InputIt last, clock_type& clock); template aged_ordered_container (InputIt first, InputIt last, clock_type& clock, Compare const& comp); template aged_ordered_container (InputIt first, InputIt last, clock_type& clock, Allocator const& alloc); template aged_ordered_container (InputIt first, InputIt last, clock_type& clock, Compare const& comp, Allocator const& alloc); aged_ordered_container (aged_ordered_container const& other); aged_ordered_container (aged_ordered_container const& other, Allocator const& alloc); aged_ordered_container (aged_ordered_container&& other); aged_ordered_container (aged_ordered_container&& other, Allocator const& alloc); aged_ordered_container (std::initializer_list init, clock_type& clock); aged_ordered_container (std::initializer_list init, clock_type& clock, Compare const& comp); aged_ordered_container (std::initializer_list init, clock_type& clock, Allocator const& alloc); aged_ordered_container (std::initializer_list init, clock_type& clock, Compare const& comp, Allocator const& alloc); ~aged_ordered_container(); aged_ordered_container& operator= (aged_ordered_container const& other); aged_ordered_container& operator= (aged_ordered_container&& other); aged_ordered_container& operator= (std::initializer_list init); allocator_type get_allocator() const { return m_config.alloc(); } clock_type& clock() { return m_config.clock; } clock_type const& clock() const { return m_config.clock; } //-------------------------------------------------------------------------- // // Element access (maps) // //-------------------------------------------------------------------------- template < class K, bool maybe_multi = IsMulti, bool maybe_map = IsMap, class = typename std::enable_if ::type> typename std::conditional ::type& at (K const& k); template < class K, bool maybe_multi = IsMulti, bool maybe_map = IsMap, class = typename std::enable_if ::type> typename std::conditional ::type const& at (K const& k) const; template < bool maybe_multi = IsMulti, bool maybe_map = IsMap, class = typename std::enable_if ::type> typename std::conditional ::type& operator[] (Key const& key); template < bool maybe_multi = IsMulti, bool maybe_map = IsMap, class = typename std::enable_if ::type> typename std::conditional ::type& operator[] (Key&& key); //-------------------------------------------------------------------------- // // Iterators // //-------------------------------------------------------------------------- iterator begin () { return iterator (m_cont.begin()); } const_iterator begin () const { return const_iterator (m_cont.begin ()); } const_iterator cbegin() const { return const_iterator (m_cont.begin ()); } iterator end () { return iterator (m_cont.end ()); } const_iterator end () const { return const_iterator (m_cont.end ()); } const_iterator cend () const { return const_iterator (m_cont.end ()); } reverse_iterator rbegin () { return reverse_iterator (m_cont.rbegin()); } const_reverse_iterator rbegin () const { return const_reverse_iterator (m_cont.rbegin ()); } const_reverse_iterator crbegin() const { return const_reverse_iterator (m_cont.rbegin ()); } reverse_iterator rend () { return reverse_iterator (m_cont.rend ()); } const_reverse_iterator rend () const { return const_reverse_iterator (m_cont.rend ()); } const_reverse_iterator crend () const { return const_reverse_iterator (m_cont.rend ()); } iterator iterator_to (value_type& value) { static_assert (std::is_standard_layout ::value, "must be standard layout"); return m_cont.iterator_to (*reinterpret_cast ( reinterpret_cast(&value)-((std::size_t) std::addressof(((element*)0)->member)))); } const_iterator iterator_to (value_type const& value) const { static_assert (std::is_standard_layout ::value, "must be standard layout"); return m_cont.iterator_to (*reinterpret_cast ( reinterpret_cast(&value)-((std::size_t) std::addressof(((element*)0)->member)))); } //-------------------------------------------------------------------------- // // Capacity // //-------------------------------------------------------------------------- bool empty() const noexcept { return m_cont.empty(); } size_type size() const noexcept { return m_cont.size(); } size_type max_size() const noexcept { return m_config.max_size(); } //-------------------------------------------------------------------------- // // Modifiers // //-------------------------------------------------------------------------- void clear(); // map, set template auto insert (value_type const& value) -> typename std::enable_if >::type; // multimap, multiset template auto insert (value_type const& value) -> typename std::enable_if ::type; // set template auto insert (value_type&& value) -> typename std::enable_if >::type; // multiset template auto insert (value_type&& value) -> typename std::enable_if ::type; //--- // map, set template auto insert (const_iterator hint, value_type const& value) -> typename std::enable_if ::type; // multimap, multiset template typename std::enable_if ::type insert (const_iterator /*hint*/, value_type const& value) { // VFALCO TODO Figure out how to utilize 'hint' return insert (value); } // map, set template auto insert (const_iterator hint, value_type&& value) -> typename std::enable_if ::type; // multimap, multiset template typename std::enable_if ::type insert (const_iterator /*hint*/, value_type&& value) { // VFALCO TODO Figure out how to utilize 'hint' return insert (std::move (value)); } // map, multimap template < class P, bool maybe_map = IsMap > typename std::enable_if ::value, typename std::conditional >::type >::type insert (P&& value) { return emplace (std::forward

(value)); } // map, multimap template < class P, bool maybe_map = IsMap > typename std::enable_if ::value, typename std::conditional >::type >::type insert (const_iterator hint, P&& value) { return emplace_hint (hint, std::forward

(value)); } template void insert (InputIt first, InputIt last) { for (; first != last; ++first) insert (cend(), *first); } void insert (std::initializer_list init) { insert (init.begin(), init.end()); } // map, set template auto emplace (Args&&... args) -> typename std::enable_if >::type; // multiset, multimap template auto emplace (Args&&... args) -> typename std::enable_if ::type; // map, set template auto emplace_hint (const_iterator hint, Args&&... args) -> typename std::enable_if >::type; // multiset, multimap template typename std::enable_if ::type emplace_hint (const_iterator /*hint*/, Args&&... args) { // VFALCO TODO Figure out how to utilize 'hint' return emplace ( std::forward (args)...); } // enable_if prevents erase (reverse_iterator pos) from compiling template ::value>> detail::aged_container_iterator erase (detail::aged_container_iterator pos); // enable_if prevents erase (reverse_iterator first, reverse_iterator last) // from compiling template ::value>> detail::aged_container_iterator erase (detail::aged_container_iterator first, detail::aged_container_iterator last); template auto erase (K const& k) -> size_type; void swap (aged_ordered_container& other) noexcept; //-------------------------------------------------------------------------- // enable_if prevents touch (reverse_iterator pos) from compiling template ::value>> void touch (detail::aged_container_iterator pos) { touch (pos, clock().now()); } template size_type touch (K const& k); //-------------------------------------------------------------------------- // // Lookup // //-------------------------------------------------------------------------- // VFALCO TODO Respect is_transparent (c++14) template size_type count (K const& k) const { return m_cont.count (k, std::cref (m_config.key_compare())); } // VFALCO TODO Respect is_transparent (c++14) template iterator find (K const& k) { return iterator (m_cont.find (k, std::cref (m_config.key_compare()))); } // VFALCO TODO Respect is_transparent (c++14) template const_iterator find (K const& k) const { return const_iterator (m_cont.find (k, std::cref (m_config.key_compare()))); } // VFALCO TODO Respect is_transparent (c++14) template std::pair equal_range (K const& k) { auto const r (m_cont.equal_range (k, std::cref (m_config.key_compare()))); return std::make_pair (iterator (r.first), iterator (r.second)); } // VFALCO TODO Respect is_transparent (c++14) template std::pair equal_range (K const& k) const { auto const r (m_cont.equal_range (k, std::cref (m_config.key_compare()))); return std::make_pair (const_iterator (r.first), const_iterator (r.second)); } // VFALCO TODO Respect is_transparent (c++14) template iterator lower_bound (K const& k) { return iterator (m_cont.lower_bound (k, std::cref (m_config.key_compare()))); } // VFALCO TODO Respect is_transparent (c++14) template const_iterator lower_bound (K const& k) const { return const_iterator (m_cont.lower_bound (k, std::cref (m_config.key_compare()))); } // VFALCO TODO Respect is_transparent (c++14) template iterator upper_bound (K const& k) { return iterator (m_cont.upper_bound (k, std::cref (m_config.key_compare()))); } // VFALCO TODO Respect is_transparent (c++14) template const_iterator upper_bound (K const& k) const { return const_iterator (m_cont.upper_bound (k, std::cref (m_config.key_compare()))); } //-------------------------------------------------------------------------- // // Observers // //-------------------------------------------------------------------------- key_compare key_comp() const { return m_config.compare(); } // VFALCO TODO Should this return const reference for set? value_compare value_comp() const { return value_compare (m_config.compare()); } //-------------------------------------------------------------------------- // // Comparison // //-------------------------------------------------------------------------- // This differs from the standard in that the comparison // is only done on the key portion of the value type, ignoring // the mapped type. // template < bool OtherIsMulti, bool OtherIsMap, class OtherT, class OtherDuration, class OtherAllocator > bool operator== ( aged_ordered_container const& other) const; template < bool OtherIsMulti, bool OtherIsMap, class OtherT, class OtherDuration, class OtherAllocator > bool operator!= ( aged_ordered_container const& other) const { return ! (this->operator== (other)); } template < bool OtherIsMulti, bool OtherIsMap, class OtherT, class OtherDuration, class OtherAllocator > bool operator< ( aged_ordered_container const& other) const { value_compare const comp (value_comp ()); return std::lexicographical_compare ( cbegin(), cend(), other.cbegin(), other.cend(), comp); } template < bool OtherIsMulti, bool OtherIsMap, class OtherT, class OtherDuration, class OtherAllocator > bool operator<= ( aged_ordered_container const& other) const { return ! (other < *this); } template < bool OtherIsMulti, bool OtherIsMap, class OtherT, class OtherDuration, class OtherAllocator > bool operator> ( aged_ordered_container const& other) const { return other < *this; } template < bool OtherIsMulti, bool OtherIsMap, class OtherT, class OtherDuration, class OtherAllocator > bool operator>= ( aged_ordered_container const& other) const { return ! (*this < other); } private: // enable_if prevents erase (reverse_iterator pos, now) from compiling template ::value>> void touch (detail::aged_container_iterator < is_const, Iterator, Base> pos, typename clock_type::time_point const& now); template ::propagate_on_container_swap::value> typename std::enable_if ::type swap_data (aged_ordered_container& other) noexcept; template ::propagate_on_container_swap::value> typename std::enable_if ::type swap_data (aged_ordered_container& other) noexcept; private: config_t m_config; cont_type mutable m_cont; }; //------------------------------------------------------------------------------ template aged_ordered_container :: aged_ordered_container ( clock_type& clock) : m_config (clock) { } template aged_ordered_container :: aged_ordered_container ( clock_type& clock, Compare const& comp) : m_config (clock, comp) { } template aged_ordered_container :: aged_ordered_container ( clock_type& clock, Allocator const& alloc) : m_config (clock, alloc) { } template aged_ordered_container :: aged_ordered_container ( clock_type& clock, Compare const& comp, Allocator const& alloc) : m_config (clock, comp, alloc) { } template template aged_ordered_container :: aged_ordered_container (InputIt first, InputIt last, clock_type& clock) : m_config (clock) { insert (first, last); } template template aged_ordered_container :: aged_ordered_container (InputIt first, InputIt last, clock_type& clock, Compare const& comp) : m_config (clock, comp) { insert (first, last); } template template aged_ordered_container :: aged_ordered_container (InputIt first, InputIt last, clock_type& clock, Allocator const& alloc) : m_config (clock, alloc) { insert (first, last); } template template aged_ordered_container :: aged_ordered_container (InputIt first, InputIt last, clock_type& clock, Compare const& comp, Allocator const& alloc) : m_config (clock, comp, alloc) { insert (first, last); } template aged_ordered_container :: aged_ordered_container (aged_ordered_container const& other) : m_config (other.m_config) { insert (other.cbegin(), other.cend()); } template aged_ordered_container :: aged_ordered_container (aged_ordered_container const& other, Allocator const& alloc) : m_config (other.m_config, alloc) { insert (other.cbegin(), other.cend()); } template aged_ordered_container :: aged_ordered_container (aged_ordered_container&& other) : m_config (std::move (other.m_config)) , m_cont (std::move (other.m_cont)) { chronological.list = std::move (other.chronological.list); } template aged_ordered_container :: aged_ordered_container (aged_ordered_container&& other, Allocator const& alloc) : m_config (std::move (other.m_config), alloc) { insert (other.cbegin(), other.cend()); other.clear (); } template aged_ordered_container :: aged_ordered_container (std::initializer_list init, clock_type& clock) : m_config (clock) { insert (init.begin(), init.end()); } template aged_ordered_container :: aged_ordered_container (std::initializer_list init, clock_type& clock, Compare const& comp) : m_config (clock, comp) { insert (init.begin(), init.end()); } template aged_ordered_container :: aged_ordered_container (std::initializer_list init, clock_type& clock, Allocator const& alloc) : m_config (clock, alloc) { insert (init.begin(), init.end()); } template aged_ordered_container :: aged_ordered_container (std::initializer_list init, clock_type& clock, Compare const& comp, Allocator const& alloc) : m_config (clock, comp, alloc) { insert (init.begin(), init.end()); } template aged_ordered_container :: ~aged_ordered_container() { clear(); } template auto aged_ordered_container :: operator= (aged_ordered_container const& other) -> aged_ordered_container& { if (this != &other) { clear(); this->m_config = other.m_config; insert (other.begin(), other.end()); } return *this; } template auto aged_ordered_container :: operator= (aged_ordered_container&& other) -> aged_ordered_container& { clear(); this->m_config = std::move (other.m_config); insert (other.begin(), other.end()); other.clear(); return *this; } template auto aged_ordered_container :: operator= (std::initializer_list init) -> aged_ordered_container& { clear (); insert (init); return *this; } //------------------------------------------------------------------------------ template template typename std::conditional ::type& aged_ordered_container :: at (K const& k) { auto const iter (m_cont.find (k, std::cref (m_config.key_compare()))); if (iter == m_cont.end()) throw std::out_of_range ("key not found"); return iter->value.second; } template template typename std::conditional ::type const& aged_ordered_container :: at (K const& k) const { auto const iter (m_cont.find (k, std::cref (m_config.key_compare()))); if (iter == m_cont.end()) throw std::out_of_range ("key not found"); return iter->value.second; } template template typename std::conditional ::type& aged_ordered_container :: operator[] (Key const& key) { typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (key, std::cref (m_config.key_compare()), d)); if (result.second) { element* const p (new_element ( std::piecewise_construct, std::forward_as_tuple (key), std::forward_as_tuple ())); m_cont.insert_commit (*p, d); chronological.list.push_back (*p); return p->value.second; } return result.first->value.second; } template template typename std::conditional ::type& aged_ordered_container :: operator[] (Key&& key) { typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (key, std::cref (m_config.key_compare()), d)); if (result.second) { element* const p (new_element ( std::piecewise_construct, std::forward_as_tuple (std::move (key)), std::forward_as_tuple ())); m_cont.insert_commit (*p, d); chronological.list.push_back (*p); return p->value.second; } return result.first->value.second; } //------------------------------------------------------------------------------ template void aged_ordered_container :: clear() { for (auto iter (chronological.list.begin()); iter != chronological.list.end();) delete_element (&*iter++); chronological.list.clear(); m_cont.clear(); } // map, set template template auto aged_ordered_container :: insert (value_type const& value) -> typename std::enable_if >::type { typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (extract (value), std::cref (m_config.key_compare()), d)); if (result.second) { element* const p (new_element (value)); auto const iter (m_cont.insert_commit (*p, d)); chronological.list.push_back (*p); return std::make_pair (iterator (iter), true); } return std::make_pair (iterator (result.first), false); } // multimap, multiset template template auto aged_ordered_container :: insert (value_type const& value) -> typename std::enable_if ::type { auto const before (m_cont.upper_bound ( extract (value), std::cref (m_config.key_compare()))); element* const p (new_element (value)); chronological.list.push_back (*p); auto const iter (m_cont.insert_before (before, *p)); return iterator (iter); } // set template template auto aged_ordered_container :: insert (value_type&& value) -> typename std::enable_if >::type { typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (extract (value), std::cref (m_config.key_compare()), d)); if (result.second) { element* const p (new_element (std::move (value))); auto const iter (m_cont.insert_commit (*p, d)); chronological.list.push_back (*p); return std::make_pair (iterator (iter), true); } return std::make_pair (iterator (result.first), false); } // multiset template template auto aged_ordered_container :: insert (value_type&& value) -> typename std::enable_if ::type { auto const before (m_cont.upper_bound ( extract (value), std::cref (m_config.key_compare()))); element* const p (new_element (std::move (value))); chronological.list.push_back (*p); auto const iter (m_cont.insert_before (before, *p)); return iterator (iter); } //--- // map, set template template auto aged_ordered_container :: insert (const_iterator hint, value_type const& value) -> typename std::enable_if ::type { typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (hint.iterator(), extract (value), std::cref (m_config.key_compare()), d)); if (result.second) { element* const p (new_element (value)); auto const iter (m_cont.insert_commit (*p, d)); chronological.list.push_back (*p); return iterator (iter); } return iterator (result.first); } // map, set template template auto aged_ordered_container :: insert (const_iterator hint, value_type&& value) -> typename std::enable_if ::type { typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (hint.iterator(), extract (value), std::cref (m_config.key_compare()), d)); if (result.second) { element* const p (new_element (std::move (value))); auto const iter (m_cont.insert_commit (*p, d)); chronological.list.push_back (*p); return iterator (iter); } return iterator (result.first); } // map, set template template auto aged_ordered_container :: emplace (Args&&... args) -> typename std::enable_if >::type { // VFALCO NOTE Its unfortunate that we need to // construct element here element* const p (new_element ( std::forward (args)...)); typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (extract (p->value), std::cref (m_config.key_compare()), d)); if (result.second) { auto const iter (m_cont.insert_commit (*p, d)); chronological.list.push_back (*p); return std::make_pair (iterator (iter), true); } delete_element (p); return std::make_pair (iterator (result.first), false); } // multiset, multimap template template auto aged_ordered_container :: emplace (Args&&... args) -> typename std::enable_if ::type { element* const p (new_element ( std::forward (args)...)); auto const before (m_cont.upper_bound (extract (p->value), std::cref (m_config.key_compare()))); chronological.list.push_back (*p); auto const iter (m_cont.insert_before (before, *p)); return iterator (iter); } // map, set template template auto aged_ordered_container :: emplace_hint (const_iterator hint, Args&&... args) -> typename std::enable_if >::type { // VFALCO NOTE Its unfortunate that we need to // construct element here element* const p (new_element ( std::forward (args)...)); typename cont_type::insert_commit_data d; auto const result (m_cont.insert_check (hint.iterator(), extract (p->value), std::cref (m_config.key_compare()), d)); if (result.second) { auto const iter (m_cont.insert_commit (*p, d)); chronological.list.push_back (*p); return std::make_pair (iterator (iter), true); } delete_element (p); return std::make_pair (iterator (result.first), false); } template template detail::aged_container_iterator aged_ordered_container :: erase (detail::aged_container_iterator pos) { unlink_and_delete_element(&*((pos++).iterator())); return detail::aged_container_iterator < false, Iterator, Base> (pos.iterator()); } template template detail::aged_container_iterator aged_ordered_container :: erase (detail::aged_container_iterator first, detail::aged_container_iterator last) { for (; first != last;) unlink_and_delete_element(&*((first++).iterator())); return detail::aged_container_iterator < false, Iterator, Base> (first.iterator()); } template template auto aged_ordered_container :: erase (K const& k) -> size_type { auto iter (m_cont.find (k, std::cref (m_config.key_compare()))); if (iter == m_cont.end()) return 0; size_type n (0); for (;;) { auto p (&*iter++); bool const done ( m_config (*p, extract (iter->value))); unlink_and_delete_element (p); ++n; if (done) break; } return n; } template void aged_ordered_container :: swap (aged_ordered_container& other) noexcept { swap_data (other); std::swap (chronological, other.chronological); std::swap (m_cont, other.m_cont); } //------------------------------------------------------------------------------ template template auto aged_ordered_container :: touch (K const& k) -> size_type { auto const now (clock().now()); size_type n (0); auto const range (equal_range (k)); for (auto iter : range) { touch (iter, now); ++n; } return n; } //------------------------------------------------------------------------------ template template bool aged_ordered_container :: operator== ( aged_ordered_container const& other) const { typedef aged_ordered_container Other; if (size() != other.size()) return false; std::equal_to eq; return std::equal (cbegin(), cend(), other.cbegin(), other.cend(), [&eq, &other](value_type const& lhs, typename Other::value_type const& rhs) { return eq (extract (lhs), other.extract (rhs)); }); } //------------------------------------------------------------------------------ template template void aged_ordered_container :: touch (detail::aged_container_iterator < is_const, Iterator, Base> pos, typename clock_type::time_point const& now) { auto& e (*pos.iterator()); e.when = now; chronological.list.erase (chronological.list.iterator_to (e)); chronological.list.push_back (e); } template template typename std::enable_if ::type aged_ordered_container :: swap_data (aged_ordered_container& other) noexcept { std::swap (m_config.key_compare(), other.m_config.key_compare()); std::swap (m_config.alloc(), other.m_config.alloc()); std::swap (m_config.clock, other.m_config.clock); } template template typename std::enable_if ::type aged_ordered_container :: swap_data (aged_ordered_container& other) noexcept { std::swap (m_config.key_compare(), other.m_config.key_compare()); std::swap (m_config.clock, other.m_config.clock); } } //------------------------------------------------------------------------------ template struct is_aged_container > : std::true_type { }; // Free functions template void swap ( detail::aged_ordered_container & lhs, detail::aged_ordered_container & rhs) noexcept { lhs.swap (rhs); } /** Expire aged container items past the specified age. */ template std::size_t expire (detail::aged_ordered_container < IsMulti, IsMap, Key, T, Duration, Compare, Allocator>& c, std::chrono::duration const& age) { std::size_t n (0); auto const expired (c.clock().now() - age); for (auto iter (c.chronological.cbegin()); iter != c.chronological.cend() && iter.when() <= expired;) { iter = c.erase (iter); ++n; } return n; } } #endif