//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012-2017 Ripple Labs Inc Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef RIPPLE_TEST_CSF_HISTOGRAM_H_INCLUDED #define RIPPLE_TEST_CSF_HISTOGRAM_H_INCLUDED #include #include #include #include #include namespace ripple { namespace test { namespace csf { /** Basic histogram. Histogram for a type `T` that satisfies - Default construction: T{} - Comparison : T a, b; bool res = a < b - Addition: T a, b; T c = a + b; - Multiplication : T a, std::size_t b; T c = a * b; - Divison: T a; std::size_t b; T c = a/b; */ template > class Histogram { // TODO: Consider logarithimic bins around expected median if this becomes // unscaleable std::map counts_; std::size_t samples = 0; public: /** Insert an sample */ void insert(T const& s) { ++counts_[s]; ++samples; } /** The number of samples */ std::size_t size() const { return samples; } /** The number of distinct samples (bins) */ std::size_t numBins() const { return counts_.size(); } /** Minimum observed value */ T minValue() const { return counts_.empty() ? T{} : counts_.begin()->first; } /** Maximum observed value */ T maxValue() const { return counts_.empty() ? T{} : counts_.rbegin()->first; } /** Histogram average */ T avg() const { T tmp{}; if (samples == 0) return tmp; // Since counts are sorted, shouldn't need to worry much about numerical // error for (auto const& [bin, count] : counts_) { tmp += bin * count; } return tmp / samples; } /** Calculate the given percentile of the distribution. @param p Percentile between 0 and 1, e.g. 0.50 is 50-th percentile If the percentile falls between two bins, uses the nearest bin. @return The given percentile of the distribution */ T percentile(float p) const { assert(p >= 0 && p <= 1); std::size_t pos = std::round(p * samples); if (counts_.empty()) return T{}; auto it = counts_.begin(); std::size_t cumsum = it->second; while (it != counts_.end() && cumsum < pos) { ++it; cumsum += it->second; } return it->first; } }; } // namespace csf } // namespace test } // namespace ripple #endif