//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2022 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef _MSC_VER #include #include #include #include #include #include #include #include #include #include namespace ripple { namespace test { namespace { [[nodiscard]] inline auto randEngine() -> std::mt19937& { static std::mt19937 r = [] { std::random_device rd; return std::mt19937{rd()}; }(); return r; } constexpr int numTokenTypeIndexes = 9; [[nodiscard]] inline auto tokenTypeAndSize(int i) -> std::tuple { assert(i < numTokenTypeIndexes); switch (i) { using enum ripple::TokenType; case 0: return {None, 20}; case 1: return {NodePublic, 32}; case 2: return {NodePublic, 33}; case 3: return {NodePrivate, 32}; case 4: return {AccountID, 20}; case 5: return {AccountPublic, 32}; case 6: return {AccountPublic, 33}; case 7: return {AccountSecret, 32}; case 8: return {FamilySeed, 16}; default: throw std::invalid_argument( "Invalid token selection passed to tokenTypeAndSize() " "in " __FILE__); } } [[nodiscard]] inline auto randomTokenTypeAndSize() -> std::tuple { using namespace ripple; auto& rng = randEngine(); std::uniform_int_distribution<> d(0, 8); return tokenTypeAndSize(d(rng)); } // Return the token type and subspan of `d` to use as test data. [[nodiscard]] inline auto randomB256TestData(std::span d) -> std::tuple> { auto& rng = randEngine(); std::uniform_int_distribution dist(0, 255); auto [tokType, tokSize] = randomTokenTypeAndSize(); std::generate(d.begin(), d.begin() + tokSize, [&] { return dist(rng); }); return {tokType, d.subspan(0, tokSize)}; } inline void printAsChar(std::span a, std::span b) { auto asString = [](std::span s) { std::string r; r.resize(s.size()); std::copy(s.begin(), s.end(), r.begin()); return r; }; auto sa = asString(a); auto sb = asString(b); std::cerr << "\n\n" << sa << "\n" << sb << "\n"; } inline void printAsInt(std::span a, std::span b) { auto asString = [](std::span s) -> std::string { std::stringstream sstr; for (auto i : s) { sstr << std::setw(3) << int(i) << ','; } return sstr.str(); }; auto sa = asString(a); auto sb = asString(b); std::cerr << "\n\n" << sa << "\n" << sb << "\n"; } } // namespace namespace multiprecision_utils { boost::multiprecision::checked_uint512_t toBoostMP(std::span in) { boost::multiprecision::checked_uint512_t mbp = 0; for (auto i = in.rbegin(); i != in.rend(); ++i) { mbp <<= 64; mbp += *i; } return mbp; } std::vector randomBigInt(std::uint8_t minSize = 1, std::uint8_t maxSize = 5) { auto eng = randEngine(); std::uniform_int_distribution numCoeffDist(minSize, maxSize); std::uniform_int_distribution dist; auto const numCoeff = numCoeffDist(eng); std::vector coeffs; coeffs.reserve(numCoeff); for (int i = 0; i < numCoeff; ++i) { coeffs.push_back(dist(eng)); } return coeffs; } } // namespace multiprecision_utils class base58_test : public beast::unit_test::suite { void testMultiprecision() { testcase("b58_multiprecision"); using namespace boost::multiprecision; constexpr std::size_t iters = 100000; auto eng = randEngine(); std::uniform_int_distribution dist; std::uniform_int_distribution dist1(1); for (int i = 0; i < iters; ++i) { std::uint64_t const d = dist(eng); if (!d) continue; auto bigInt = multiprecision_utils::randomBigInt(); auto const boostBigInt = multiprecision_utils::toBoostMP( std::span(bigInt.data(), bigInt.size())); auto const refDiv = boostBigInt / d; auto const refMod = boostBigInt % d; auto const mod = b58_fast::detail::inplace_bigint_div_rem( std::span(bigInt.data(), bigInt.size()), d); auto const foundDiv = multiprecision_utils::toBoostMP(bigInt); BEAST_EXPECT(refMod.convert_to() == mod); BEAST_EXPECT(foundDiv == refDiv); } for (int i = 0; i < iters; ++i) { std::uint64_t const d = dist(eng); auto bigInt = multiprecision_utils::randomBigInt(/*minSize*/ 2); if (bigInt[bigInt.size() - 1] == std::numeric_limits::max()) { bigInt[bigInt.size() - 1] -= 1; // Prevent overflow } auto const boostBigInt = multiprecision_utils::toBoostMP( std::span(bigInt.data(), bigInt.size())); auto const refAdd = boostBigInt + d; auto const result = b58_fast::detail::inplace_bigint_add( std::span(bigInt.data(), bigInt.size()), d); BEAST_EXPECT(result == TokenCodecErrc::success); auto const foundAdd = multiprecision_utils::toBoostMP(bigInt); BEAST_EXPECT(refAdd == foundAdd); } for (int i = 0; i < iters; ++i) { std::uint64_t const d = dist1(eng); // Force overflow std::vector bigInt( 5, std::numeric_limits::max()); auto const boostBigInt = multiprecision_utils::toBoostMP( std::span(bigInt.data(), bigInt.size())); auto const refAdd = boostBigInt + d; auto const result = b58_fast::detail::inplace_bigint_add( std::span(bigInt.data(), bigInt.size()), d); BEAST_EXPECT(result == TokenCodecErrc::overflowAdd); auto const foundAdd = multiprecision_utils::toBoostMP(bigInt); BEAST_EXPECT(refAdd != foundAdd); } for (int i = 0; i < iters; ++i) { std::uint64_t const d = dist(eng); auto bigInt = multiprecision_utils::randomBigInt(/* minSize */ 2); // inplace mul requires the most significant coeff to be zero to // hold the result. bigInt[bigInt.size() - 1] = 0; auto const boostBigInt = multiprecision_utils::toBoostMP( std::span(bigInt.data(), bigInt.size())); auto const refMul = boostBigInt * d; auto const result = b58_fast::detail::inplace_bigint_mul( std::span(bigInt.data(), bigInt.size()), d); BEAST_EXPECT(result == TokenCodecErrc::success); auto const foundMul = multiprecision_utils::toBoostMP(bigInt); BEAST_EXPECT(refMul == foundMul); } for (int i = 0; i < iters; ++i) { std::uint64_t const d = dist1(eng); // Force overflow std::vector bigInt( 5, std::numeric_limits::max()); auto const boostBigInt = multiprecision_utils::toBoostMP( std::span(bigInt.data(), bigInt.size())); auto const refMul = boostBigInt * d; auto const result = b58_fast::detail::inplace_bigint_mul( std::span(bigInt.data(), bigInt.size()), d); BEAST_EXPECT(result == TokenCodecErrc::inputTooLarge); auto const foundMul = multiprecision_utils::toBoostMP(bigInt); BEAST_EXPECT(refMul != foundMul); } } void testFastMatchesRef() { testcase("fast_matches_ref"); auto testRawEncode = [&](std::span const& b256Data) { std::array b58ResultBuf[2]; std::array, 2> b58Result; std::array b256ResultBuf[2]; std::array, 2> b256Result; for (int i = 0; i < 2; ++i) { std::span const outBuf{b58ResultBuf[i]}; if (i == 0) { auto const r = ripple::b58_fast::detail::b256_to_b58_be( b256Data, outBuf); BEAST_EXPECT(r); b58Result[i] = r.value(); } else { std::array tmpBuf; std::string const s = ripple::b58_ref::detail::encodeBase58( b256Data.data(), b256Data.size(), tmpBuf.data(), tmpBuf.size()); BEAST_EXPECT(s.size()); b58Result[i] = outBuf.subspan(0, s.size()); std::copy(s.begin(), s.end(), b58Result[i].begin()); } } if (BEAST_EXPECT(b58Result[0].size() == b58Result[1].size())) { if (!BEAST_EXPECT( memcmp( b58Result[0].data(), b58Result[1].data(), b58Result[0].size()) == 0)) { printAsChar(b58Result[0], b58Result[1]); } } for (int i = 0; i < 2; ++i) { std::span const outBuf{ b256ResultBuf[i].data(), b256ResultBuf[i].size()}; if (i == 0) { std::string const in( b58Result[i].data(), b58Result[i].data() + b58Result[i].size()); auto const r = ripple::b58_fast::detail::b58_to_b256_be(in, outBuf); BEAST_EXPECT(r); b256Result[i] = r.value(); } else { std::string const st( b58Result[i].begin(), b58Result[i].end()); std::string const s = ripple::b58_ref::detail::decodeBase58(st); BEAST_EXPECT(s.size()); b256Result[i] = outBuf.subspan(0, s.size()); std::copy(s.begin(), s.end(), b256Result[i].begin()); } } if (BEAST_EXPECT(b256Result[0].size() == b256Result[1].size())) { if (!BEAST_EXPECT( memcmp( b256Result[0].data(), b256Result[1].data(), b256Result[0].size()) == 0)) { printAsInt(b256Result[0], b256Result[1]); } } }; auto testTokenEncode = [&](ripple::TokenType const tokType, std::span const& b256Data) { std::array b58ResultBuf[2]; std::array, 2> b58Result; std::array b256ResultBuf[2]; std::array, 2> b256Result; for (int i = 0; i < 2; ++i) { std::span const outBuf{ b58ResultBuf[i].data(), b58ResultBuf[i].size()}; if (i == 0) { auto const r = ripple::b58_fast::encodeBase58Token( tokType, b256Data, outBuf); BEAST_EXPECT(r); b58Result[i] = r.value(); } else { std::string const s = ripple::b58_ref::encodeBase58Token( tokType, b256Data.data(), b256Data.size()); BEAST_EXPECT(s.size()); b58Result[i] = outBuf.subspan(0, s.size()); std::copy(s.begin(), s.end(), b58Result[i].begin()); } } if (BEAST_EXPECT(b58Result[0].size() == b58Result[1].size())) { if (!BEAST_EXPECT( memcmp( b58Result[0].data(), b58Result[1].data(), b58Result[0].size()) == 0)) { printAsChar(b58Result[0], b58Result[1]); } } for (int i = 0; i < 2; ++i) { std::span const outBuf{ b256ResultBuf[i].data(), b256ResultBuf[i].size()}; if (i == 0) { std::string const in( b58Result[i].data(), b58Result[i].data() + b58Result[i].size()); auto const r = ripple::b58_fast::decodeBase58Token( tokType, in, outBuf); BEAST_EXPECT(r); b256Result[i] = r.value(); } else { std::string const st( b58Result[i].begin(), b58Result[i].end()); std::string const s = ripple::b58_ref::decodeBase58Token(st, tokType); BEAST_EXPECT(s.size()); b256Result[i] = outBuf.subspan(0, s.size()); std::copy(s.begin(), s.end(), b256Result[i].begin()); } } if (BEAST_EXPECT(b256Result[0].size() == b256Result[1].size())) { if (!BEAST_EXPECT( memcmp( b256Result[0].data(), b256Result[1].data(), b256Result[0].size()) == 0)) { printAsInt(b256Result[0], b256Result[1]); } } }; auto testIt = [&](ripple::TokenType const tokType, std::span const& b256Data) { testRawEncode(b256Data); testTokenEncode(tokType, b256Data); }; // test every token type with data where every byte is the same and the // bytes range from 0-255 for (int i = 0; i < numTokenTypeIndexes; ++i) { std::array b256DataBuf; auto const [tokType, tokSize] = tokenTypeAndSize(i); for (int d = 0; d <= 255; ++d) { memset(b256DataBuf.data(), d, tokSize); testIt(tokType, std::span(b256DataBuf.data(), tokSize)); } } // test with random data constexpr std::size_t iters = 100000; for (int i = 0; i < iters; ++i) { std::array b256DataBuf; auto const [tokType, b256Data] = randomB256TestData(b256DataBuf); testIt(tokType, b256Data); } } void run() override { testMultiprecision(); testFastMatchesRef(); } }; BEAST_DEFINE_TESTSUITE(base58, basics, ripple); } // namespace test } // namespace ripple #endif // _MSC_VER