//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2022 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef RIPPLE_PROTOCOL_B58_UTILS_H_INCLUDED #define RIPPLE_PROTOCOL_B58_UTILS_H_INCLUDED #include #include #include #include #include #include #include #include namespace ripple { template using Result = boost::outcome_v2::result; #ifndef _MSC_VER namespace b58_fast { namespace detail { // This optimizes to what hand written asm would do (single divide) [[nodiscard]] inline std::tuple div_rem(std::uint64_t a, std::uint64_t b) { return {a / b, a % b}; } // This optimizes to what hand written asm would do (single multiply) [[nodiscard]] inline std::tuple carrying_mul(std::uint64_t a, std::uint64_t b, std::uint64_t carry) { unsigned __int128 const x = a; unsigned __int128 const y = b; unsigned __int128 const c = x * y + carry; return {c & 0xffff'ffff'ffff'ffff, c >> 64}; } [[nodiscard]] inline std::tuple carrying_add(std::uint64_t a, std::uint64_t b) { unsigned __int128 const x = a; unsigned __int128 const y = b; unsigned __int128 const c = x + y; return {c & 0xffff'ffff'ffff'ffff, c >> 64}; } // Add a u64 to a "big uint" value inplace. // The bigint value is stored with the smallest coefficients first // (i.e a[0] is the 2^0 coefficient, a[n] is the 2^(64*n) coefficient) // panics if overflows (this is a specialized adder for b58 decoding. // it should never overflow). [[nodiscard]] inline TokenCodecErrc inplace_bigint_add(std::span a, std::uint64_t b) { if (a.size() <= 1) { return TokenCodecErrc::inputTooSmall; } std::uint64_t carry; std::tie(a[0], carry) = carrying_add(a[0], b); for (auto& v : a.subspan(1)) { if (!carry) { return TokenCodecErrc::success; } std::tie(v, carry) = carrying_add(v, 1); } if (carry) { return TokenCodecErrc::overflowAdd; } return TokenCodecErrc::success; } [[nodiscard]] inline TokenCodecErrc inplace_bigint_mul(std::span a, std::uint64_t b) { if (a.empty()) { return TokenCodecErrc::inputTooSmall; } auto const last_index = a.size() - 1; if (a[last_index] != 0) { return TokenCodecErrc::inputTooLarge; } std::uint64_t carry = 0; for (auto& coeff : a.subspan(0, last_index)) { std::tie(coeff, carry) = carrying_mul(coeff, b, carry); } a[last_index] = carry; return TokenCodecErrc::success; } // divide a "big uint" value inplace and return the mod // numerator is stored so smallest coefficients come first [[nodiscard]] inline std::uint64_t inplace_bigint_div_rem(std::span numerator, std::uint64_t divisor) { if (numerator.size() == 0) { // should never happen, but if it does then it seems natural to define // the a null set of numbers to be zero, so the remainder is also zero. // LCOV_EXCL_START UNREACHABLE( "ripple::b58_fast::detail::inplace_bigint_div_rem : empty " "numerator"); return 0; // LCOV_EXCL_STOP } auto to_u128 = [](std::uint64_t high, std::uint64_t low) -> unsigned __int128 { unsigned __int128 const high128 = high; unsigned __int128 const low128 = low; return ((high128 << 64) | low128); }; auto div_rem_64 = [](unsigned __int128 num, std::uint64_t denom) -> std::tuple { unsigned __int128 const denom128 = denom; unsigned __int128 const d = num / denom128; unsigned __int128 const r = num - (denom128 * d); XRPL_ASSERT( d >> 64 == 0, "ripple::b58_fast::detail::inplace_bigint_div_rem::div_rem_64 : " "valid division result"); XRPL_ASSERT( r >> 64 == 0, "ripple::b58_fast::detail::inplace_bigint_div_rem::div_rem_64 : " "valid remainder"); return {static_cast(d), static_cast(r)}; }; std::uint64_t prev_rem = 0; int const last_index = numerator.size() - 1; std::tie(numerator[last_index], prev_rem) = div_rem(numerator[last_index], divisor); for (int i = last_index - 1; i >= 0; --i) { unsigned __int128 const cur_num = to_u128(prev_rem, numerator[i]); std::tie(numerator[i], prev_rem) = div_rem_64(cur_num, divisor); } return prev_rem; } // convert from base 58^10 to base 58 // put largest coeffs first // the `_be` suffix stands for "big endian" [[nodiscard]] inline std::array b58_10_to_b58_be(std::uint64_t input) { [[maybe_unused]] static constexpr std::uint64_t B_58_10 = 430804206899405824; // 58^10; XRPL_ASSERT( input < B_58_10, "ripple::b58_fast::detail::b58_10_to_b58_be : valid input"); constexpr std::size_t resultSize = 10; std::array result{}; int i = 0; while (input > 0) { std::uint64_t rem; std::tie(input, rem) = div_rem(input, 58); result[resultSize - 1 - i] = rem; i += 1; } return result; } } // namespace detail } // namespace b58_fast #endif } // namespace ripple #endif // RIPPLE_PROTOCOL_B58_UTILS_H_INCLUDED