#ifndef XRPL_BASICS_SCOPE_H_INCLUDED #define XRPL_BASICS_SCOPE_H_INCLUDED #include #include #include #include #include namespace ripple { // RAII scope helpers. As specified in Library Fundamental, Version 3 // Basic design of idea: https://www.youtube.com/watch?v=WjTrfoiB0MQ // Specification: // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4873.html#scopeguard // This implementation deviates from the spec slightly: // The scope_exit and scope_fail constructors taking a functor are not // permitted to throw an exception. This was done because some compilers // did not like the superfluous try/catch in the common instantiations // where the construction was noexcept. Instead a static_assert is used // to enforce this restriction. template class scope_exit { EF exit_function_; bool execute_on_destruction_{true}; public: ~scope_exit() { if (execute_on_destruction_) exit_function_(); } scope_exit(scope_exit&& rhs) noexcept( std::is_nothrow_move_constructible_v || std::is_nothrow_copy_constructible_v) : exit_function_{std::forward(rhs.exit_function_)} , execute_on_destruction_{rhs.execute_on_destruction_} { rhs.release(); } scope_exit& operator=(scope_exit&&) = delete; template explicit scope_exit( EFP&& f, std::enable_if_t< !std::is_same_v, scope_exit> && std::is_constructible_v>* = 0) noexcept : exit_function_{std::forward(f)} { static_assert( std:: is_nothrow_constructible_v(f))>); } void release() noexcept { execute_on_destruction_ = false; } }; template scope_exit(EF) -> scope_exit; template class scope_fail { EF exit_function_; bool execute_on_destruction_{true}; int uncaught_on_creation_{std::uncaught_exceptions()}; public: ~scope_fail() { if (execute_on_destruction_ && std::uncaught_exceptions() > uncaught_on_creation_) exit_function_(); } scope_fail(scope_fail&& rhs) noexcept( std::is_nothrow_move_constructible_v || std::is_nothrow_copy_constructible_v) : exit_function_{std::forward(rhs.exit_function_)} , execute_on_destruction_{rhs.execute_on_destruction_} , uncaught_on_creation_{rhs.uncaught_on_creation_} { rhs.release(); } scope_fail& operator=(scope_fail&&) = delete; template explicit scope_fail( EFP&& f, std::enable_if_t< !std::is_same_v, scope_fail> && std::is_constructible_v>* = 0) noexcept : exit_function_{std::forward(f)} { static_assert( std:: is_nothrow_constructible_v(f))>); } void release() noexcept { execute_on_destruction_ = false; } }; template scope_fail(EF) -> scope_fail; template class scope_success { EF exit_function_; bool execute_on_destruction_{true}; int uncaught_on_creation_{std::uncaught_exceptions()}; public: ~scope_success() noexcept(noexcept(exit_function_())) { if (execute_on_destruction_ && std::uncaught_exceptions() <= uncaught_on_creation_) exit_function_(); } scope_success(scope_success&& rhs) noexcept( std::is_nothrow_move_constructible_v || std::is_nothrow_copy_constructible_v) : exit_function_{std::forward(rhs.exit_function_)} , execute_on_destruction_{rhs.execute_on_destruction_} , uncaught_on_creation_{rhs.uncaught_on_creation_} { rhs.release(); } scope_success& operator=(scope_success&&) = delete; template explicit scope_success( EFP&& f, std::enable_if_t< !std::is_same_v, scope_success> && std::is_constructible_v>* = 0) noexcept(std::is_nothrow_constructible_v || std::is_nothrow_constructible_v) : exit_function_{std::forward(f)} { } void release() noexcept { execute_on_destruction_ = false; } }; template scope_success(EF) -> scope_success; /** Automatically unlocks and re-locks a unique_lock object. This is the reverse of a std::unique_lock object - instead of locking the mutex for the lifetime of this object, it unlocks it. Make sure you don't try to unlock mutexes that aren't actually locked! This is essentially a less-versatile boost::reverse_lock. e.g. @code std::mutex mut; for (;;) { std::unique_lock myScopedLock{mut}; // mut is now locked ... do some stuff with it locked .. while (xyz) { ... do some stuff with it locked .. scope_unlock unlocker{myScopedLock}; // mut is now unlocked for the remainder of this block, // and re-locked at the end. ...do some stuff with it unlocked ... } // mut gets locked here. } // mut gets unlocked here @endcode */ template class scope_unlock { std::unique_lock* plock; public: explicit scope_unlock(std::unique_lock& lock) noexcept(true) : plock(&lock) { XRPL_ASSERT( plock->owns_lock(), "ripple::scope_unlock::scope_unlock : mutex must be locked"); plock->unlock(); } // Immovable type scope_unlock(scope_unlock const&) = delete; scope_unlock& operator=(scope_unlock const&) = delete; ~scope_unlock() noexcept(true) { plock->lock(); } }; template scope_unlock(std::unique_lock&) -> scope_unlock; } // namespace ripple #endif