// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(LEVELDB_PLATFORM_ANDROID) #include #endif #include "../hyperleveldb/env.h" #include "../hyperleveldb/slice.h" #include "../port/port.h" #include "logging.h" #include "mutexlock.h" #include "posix_logger.h" namespace hyperleveldb { namespace { static Status IOError(const std::string& context, int err_number) { return Status::IOError(context, strerror(err_number)); } class PosixSequentialFile: public SequentialFile { private: std::string filename_; FILE* file_; public: PosixSequentialFile(const std::string& fname, FILE* f) : filename_(fname), file_(f) { } virtual ~PosixSequentialFile() { fclose(file_); } virtual Status Read(size_t n, Slice* result, char* scratch) { Status s; size_t r = fread_unlocked(scratch, 1, n, file_); *result = Slice(scratch, r); if (r < n) { if (feof(file_)) { // We leave status as ok if we hit the end of the file } else { // A partial read with an error: return a non-ok status s = IOError(filename_, errno); } } return s; } virtual Status Skip(uint64_t n) { if (fseek(file_, n, SEEK_CUR)) { return IOError(filename_, errno); } return Status::OK(); } }; // pread() based random-access class PosixRandomAccessFile: public RandomAccessFile { private: std::string filename_; int fd_; public: PosixRandomAccessFile(const std::string& fname, int fd) : filename_(fname), fd_(fd) { } virtual ~PosixRandomAccessFile() { close(fd_); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { Status s; ssize_t r = pread(fd_, scratch, n, static_cast(offset)); *result = Slice(scratch, (r < 0) ? 0 : r); if (r < 0) { // An error: return a non-ok status s = IOError(filename_, errno); } return s; } }; // Helper class to limit mmap file usage so that we do not end up // running out virtual memory or running into kernel performance // problems for very large databases. class MmapLimiter { public: // Up to 1000 mmaps for 64-bit binaries; none for smaller pointer sizes. MmapLimiter() { SetAllowed(sizeof(void*) >= 8 ? 1000 : 0); } // If another mmap slot is available, acquire it and return true. // Else return false. bool Acquire() { if (GetAllowed() <= 0) { return false; } MutexLock l(&mu_); intptr_t x = GetAllowed(); if (x <= 0) { return false; } else { SetAllowed(x - 1); return true; } } // Release a slot acquired by a previous call to Acquire() that returned true. void Release() { MutexLock l(&mu_); SetAllowed(GetAllowed() + 1); } private: port::Mutex mu_; port::AtomicPointer allowed_; intptr_t GetAllowed() const { return reinterpret_cast(allowed_.Acquire_Load()); } // REQUIRES: mu_ must be held void SetAllowed(intptr_t v) { allowed_.Release_Store(reinterpret_cast(v)); } MmapLimiter(const MmapLimiter&); void operator=(const MmapLimiter&); }; // mmap() based random-access class PosixMmapReadableFile: public RandomAccessFile { private: std::string filename_; void* mmapped_region_; size_t length_; MmapLimiter* limiter_; public: // base[0,length-1] contains the mmapped contents of the file. PosixMmapReadableFile(const std::string& fname, void* base, size_t length, MmapLimiter* limiter) : filename_(fname), mmapped_region_(base), length_(length), limiter_(limiter) { } virtual ~PosixMmapReadableFile() { munmap(mmapped_region_, length_); limiter_->Release(); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { Status s; if (offset + n > length_) { *result = Slice(); s = IOError(filename_, EINVAL); } else { *result = Slice(reinterpret_cast(mmapped_region_) + offset, n); } return s; } }; // We preallocate up to an extra megabyte and use memcpy to append new // data to the file. This is safe since we either properly close the // file before reading from it, or for log files, the reading code // knows enough to skip zero suffixes. // TODO: I use GCC intrinsics here. I don't feel bad about this, but it // hinders portability. class PosixMmapFile : public WritableFile { private: struct MmapSegment { MmapSegment* next_; // the next-lowest Map segment in the file uint64_t file_offset_; // Offset of base_ in file uint64_t written_; // The amount of data written to this segment uint64_t size_; // The size of the mapped region char* base_; // The mapped region }; std::string filename_; // Path to the file int fd_; // The open file size_t page_size_; // System page size uint64_t sync_offset_; // Offset of the last sync call uint64_t end_offset_; // Where does the file end? MmapSegment* segments_; // mmap'ed regions of memory port::Mutex mtx_; // Synchronize and shit // Roundup x to a multiple of y static size_t Roundup(size_t x, size_t y) { return ((x + y - 1) / y) * y; } MmapSegment* GetSegment(uint64_t offset) { MutexLock l(&mtx_); while (true) { MmapSegment* seg = segments_; while (seg && seg->file_offset_ > offset) { seg = seg->next_; } if (!seg || seg->file_offset_ + seg->size_ <= offset) { assert(seg == segments_); MmapSegment* new_seg = new MmapSegment(); new_seg->next_ = seg; new_seg->file_offset_ = seg ? seg->file_offset_ + seg-> size_ : 0; new_seg->written_ = 0; new_seg->size_ = seg ? seg->size_ : Roundup(1 << 20, page_size_); if (ftruncate(fd_, new_seg->file_offset_ + new_seg->size_) < 0) { delete new_seg; return NULL; } void* ptr = mmap(NULL, new_seg->size_, PROT_READ | PROT_WRITE, MAP_SHARED, fd_, new_seg->file_offset_); if (ptr == MAP_FAILED) { delete new_seg; return NULL; } new_seg->base_ = reinterpret_cast(ptr); segments_ = new_seg; continue; } assert(seg && seg->file_offset_ <= offset && seg->file_offset_ + seg->size_ > offset); return seg; } } bool ReleaseSegment(MmapSegment* seg, bool full) { return true; } public: PosixMmapFile(const std::string& fname, int fd, size_t page_size) : filename_(fname), fd_(fd), page_size_(page_size), sync_offset_(0), end_offset_(0), segments_(NULL), mtx_() { assert((page_size & (page_size - 1)) == 0); } ~PosixMmapFile() { if (fd_ >= 0) { PosixMmapFile::Close(); } } virtual Status WriteAt(uint64_t offset, const Slice& data) { uint64_t end = offset + data.size(); const char* src = data.data(); uint64_t left = data.size(); while (left > 0) { MmapSegment* seg = GetSegment(offset); if (!seg) { return IOError(filename_, errno); } assert(offset >= seg->file_offset_); assert(offset < seg->file_offset_ + seg->size_); uint64_t local_offset = offset - seg->file_offset_; uint64_t avail = seg->size_ - local_offset; uint64_t n = (left <= avail) ? left : avail; memcpy(seg->base_ + local_offset, src, n); src += n; left -= n; offset += n; uint64_t written = __sync_add_and_fetch(&seg->written_, n); if (!ReleaseSegment(seg, written == seg->size_)) { return IOError(filename_, errno); } } uint64_t old_end = end; do { old_end = __sync_val_compare_and_swap(&end_offset_, old_end, end); } while (old_end < end); return Status::OK(); } virtual Status Append(const Slice& data) { uint64_t offset = __sync_val_compare_and_swap(&end_offset_, 0, 0); return WriteAt(offset, data); } virtual Status Close() { Status s; while (segments_) { MmapSegment* seg = segments_; segments_ = seg->next_; if (munmap(seg->base_, seg->size_) < 0) { s = IOError(filename_, errno); } seg->base_ = NULL; delete seg; } if (ftruncate(fd_, end_offset_) < 0) { s = IOError(filename_, errno); } if (close(fd_) < 0) { if (s.ok()) { s = IOError(filename_, errno); } } fd_ = -1; return s; } virtual Status Sync() { Status s; bool need_sync = false; { MutexLock l(&mtx_); need_sync = sync_offset_ != end_offset_; sync_offset_ = end_offset_; } if (need_sync) { // Some unmapped data was not synced if (fdatasync(fd_) < 0) { s = IOError(filename_, errno); } } return s; } }; static int LockOrUnlock(int fd, bool lock) { errno = 0; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = (lock ? F_WRLCK : F_UNLCK); f.l_whence = SEEK_SET; f.l_start = 0; f.l_len = 0; // Lock/unlock entire file return fcntl(fd, F_SETLK, &f); } class PosixFileLock : public FileLock { public: int fd_; std::string name_; }; // Set of locked files. We keep a separate set instead of just // relying on fcntrl(F_SETLK) since fcntl(F_SETLK) does not provide // any protection against multiple uses from the same process. class PosixLockTable { private: port::Mutex mu_; std::set locked_files_; public: bool Insert(const std::string& fname) { MutexLock l(&mu_); return locked_files_.insert(fname).second; } void Remove(const std::string& fname) { MutexLock l(&mu_); locked_files_.erase(fname); } }; class PosixEnv : public Env { public: PosixEnv(); virtual ~PosixEnv() { fprintf(stderr, "Destroying Env::Default()\n"); abort(); } virtual Status NewSequentialFile(const std::string& fname, SequentialFile** result) { FILE* f = fopen(fname.c_str(), "r"); if (f == NULL) { *result = NULL; return IOError(fname, errno); } else { *result = new PosixSequentialFile(fname, f); return Status::OK(); } } virtual Status NewRandomAccessFile(const std::string& fname, RandomAccessFile** result) { *result = NULL; Status s; int fd = open(fname.c_str(), O_RDONLY); if (fd < 0) { s = IOError(fname, errno); } else if (mmap_limit_.Acquire()) { uint64_t size; s = GetFileSize(fname, &size); if (s.ok()) { void* base = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0); if (base != MAP_FAILED) { *result = new PosixMmapReadableFile(fname, base, size, &mmap_limit_); } else { s = IOError(fname, errno); } } close(fd); if (!s.ok()) { mmap_limit_.Release(); } } else { *result = new PosixRandomAccessFile(fname, fd); } return s; } virtual Status NewWritableFile(const std::string& fname, WritableFile** result) { Status s; const int fd = open(fname.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); if (fd < 0) { *result = NULL; s = IOError(fname, errno); } else { *result = new PosixMmapFile(fname, fd, page_size_); } return s; } virtual bool FileExists(const std::string& fname) { return access(fname.c_str(), F_OK) == 0; } virtual Status GetChildren(const std::string& dir, std::vector* result) { result->clear(); DIR* d = opendir(dir.c_str()); if (d == NULL) { return IOError(dir, errno); } struct dirent* entry; while ((entry = readdir(d)) != NULL) { result->push_back(entry->d_name); } closedir(d); return Status::OK(); } virtual Status DeleteFile(const std::string& fname) { Status result; if (unlink(fname.c_str()) != 0) { result = IOError(fname, errno); } return result; } virtual Status CreateDir(const std::string& name) { Status result; if (mkdir(name.c_str(), 0755) != 0) { result = IOError(name, errno); } return result; } virtual Status DeleteDir(const std::string& name) { Status result; if (rmdir(name.c_str()) != 0) { result = IOError(name, errno); } return result; } virtual Status GetFileSize(const std::string& fname, uint64_t* size) { Status s; struct stat sbuf; if (stat(fname.c_str(), &sbuf) != 0) { *size = 0; s = IOError(fname, errno); } else { *size = sbuf.st_size; } return s; } virtual Status RenameFile(const std::string& src, const std::string& target) { Status result; if (rename(src.c_str(), target.c_str()) != 0) { result = IOError(src, errno); } return result; } virtual Status LockFile(const std::string& fname, FileLock** lock) { *lock = NULL; Status result; int fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644); if (fd < 0) { result = IOError(fname, errno); } else if (!locks_.Insert(fname)) { close(fd); result = Status::IOError("lock " + fname, "already held by process"); } else if (LockOrUnlock(fd, true) == -1) { result = IOError("lock " + fname, errno); close(fd); locks_.Remove(fname); } else { PosixFileLock* my_lock = new PosixFileLock; my_lock->fd_ = fd; my_lock->name_ = fname; *lock = my_lock; } return result; } virtual Status UnlockFile(FileLock* lock) { PosixFileLock* my_lock = reinterpret_cast(lock); Status result; if (LockOrUnlock(my_lock->fd_, false) == -1) { result = IOError("unlock", errno); } locks_.Remove(my_lock->name_); close(my_lock->fd_); delete my_lock; return result; } virtual void Schedule(void (*function)(void*), void* arg); virtual void StartThread(void (*function)(void* arg), void* arg); virtual Status GetTestDirectory(std::string* result) { const char* env = getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", int(geteuid())); *result = buf; } // Directory may already exist CreateDir(*result); return Status::OK(); } static uint64_t gettid() { pthread_t tid = pthread_self(); uint64_t thread_id = 0; memcpy(&thread_id, &tid, std::min(sizeof(thread_id), sizeof(tid))); return thread_id; } virtual Status NewLogger(const std::string& fname, Logger** result) { FILE* f = fopen(fname.c_str(), "w"); if (f == NULL) { *result = NULL; return IOError(fname, errno); } else { *result = new PosixLogger(f, &PosixEnv::gettid); return Status::OK(); } } virtual uint64_t NowMicros() { struct timeval tv; gettimeofday(&tv, NULL); return static_cast(tv.tv_sec) * 1000000 + tv.tv_usec; } virtual void SleepForMicroseconds(int micros) { usleep(micros); } private: void PthreadCall(const char* label, int result) { if (result != 0) { fprintf(stderr, "pthread %s: %s\n", label, strerror(result)); abort(); } } // BGThread() is the body of the background thread void BGThread(); static void* BGThreadWrapper(void* arg) { reinterpret_cast(arg)->BGThread(); return NULL; } size_t page_size_; pthread_mutex_t mu_; pthread_cond_t bgsignal_; pthread_t bgthread_; bool started_bgthread_; // Entry per Schedule() call struct BGItem { void* arg; void (*function)(void*); }; typedef std::deque BGQueue; BGQueue queue_; PosixLockTable locks_; MmapLimiter mmap_limit_; }; PosixEnv::PosixEnv() : page_size_(getpagesize()), started_bgthread_(false) { PthreadCall("mutex_init", pthread_mutex_init(&mu_, NULL)); PthreadCall("cvar_init", pthread_cond_init(&bgsignal_, NULL)); } void PosixEnv::Schedule(void (*function)(void*), void* arg) { PthreadCall("lock", pthread_mutex_lock(&mu_)); // Start background thread if necessary if (!started_bgthread_) { started_bgthread_ = true; PthreadCall( "create thread", pthread_create(&bgthread_, NULL, &PosixEnv::BGThreadWrapper, this)); } // If the queue is currently empty, the background thread may currently be // waiting. if (queue_.empty()) { PthreadCall("signal", pthread_cond_signal(&bgsignal_)); } // Add to priority queue queue_.push_back(BGItem()); queue_.back().function = function; queue_.back().arg = arg; PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } void PosixEnv::BGThread() { while (true) { // Wait until there is an item that is ready to run PthreadCall("lock", pthread_mutex_lock(&mu_)); while (queue_.empty()) { PthreadCall("wait", pthread_cond_wait(&bgsignal_, &mu_)); } void (*function)(void*) = queue_.front().function; void* arg = queue_.front().arg; queue_.pop_front(); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); (*function)(arg); } } namespace { struct StartThreadState { void (*user_function)(void*); void* arg; }; } static void* StartThreadWrapper(void* arg) { StartThreadState* state = reinterpret_cast(arg); state->user_function(state->arg); delete state; return NULL; } void PosixEnv::StartThread(void (*function)(void* arg), void* arg) { pthread_t t; StartThreadState* state = new StartThreadState; state->user_function = function; state->arg = arg; PthreadCall("start thread", pthread_create(&t, NULL, &StartThreadWrapper, state)); } } // namespace static pthread_once_t oncePosix = PTHREAD_ONCE_INIT; static Env* default_env; static void InitDefaultEnv() { default_env = new PosixEnv; } Env* Env::Default() { pthread_once(&oncePosix, InitDefaultEnv); return default_env; } } // namespace hyperleveldb