//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012, 2013 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef RIPPLE_PROTOCOL_PUBLICKEY_H_INCLUDED #define RIPPLE_PROTOCOL_PUBLICKEY_H_INCLUDED #include #include // move to protocol/ #include #include #include #include #include #include #include #include #include namespace ripple { /** A public key. Public keys are used in the public-key cryptography system used to verify signatures attached to messages. The format of the public key is Ripple specific, information needed to determine the cryptosystem parameters used is stored inside the key. As of this writing two systems are supported: secp256k1 ed25519 secp256k1 public keys consist of a 33 byte compressed public key, with the lead byte equal to 0x02 or 0x03. The ed25519 public keys consist of a 1 byte prefix constant 0xED, followed by 32 bytes of public key data. */ class PublicKey { protected: std::size_t size_ = 0; std::uint8_t buf_[33]; // should be large enough public: PublicKey() = default; PublicKey (PublicKey const& other); PublicKey& operator= (PublicKey const& other); /** Create a public key. Preconditions: publicKeyType(Slice(data, size)) != boost::none */ explicit PublicKey (Slice const& slice); std::uint8_t const* data() const noexcept { return buf_; } std::size_t size() const noexcept { return size_; } bool empty() const noexcept { return size_ == 0; } Slice slice() const noexcept { return { buf_, size_ }; } operator Slice() const noexcept { return slice(); } }; /** Print the public key to a stream. */ std::ostream& operator<<(std::ostream& os, PublicKey const& pk); inline bool operator== (PublicKey const& lhs, PublicKey const& rhs) { return lhs.size() == rhs.size() && std::memcmp(lhs.data(), rhs.data(), rhs.size()) == 0; } inline bool operator< (PublicKey const& lhs, PublicKey const& rhs) { return std::lexicographical_compare( lhs.data(), lhs.data() + lhs.size(), rhs.data(), rhs.data() + rhs.size()); } template void hash_append (Hasher& h, PublicKey const& pk) { h(pk.data(), pk.size()); } template<> struct STExchange { using value_type = PublicKey; static void get (boost::optional& t, STBlob const& u) { t.emplace (Slice(u.data(), u.size())); } static std::unique_ptr set (SField const& f, PublicKey const& t) { return std::make_unique( f, t.data(), t.size()); } }; //------------------------------------------------------------------------------ inline std::string toBase58 (TokenType type, PublicKey const& pk) { return base58EncodeToken( type, pk.data(), pk.size()); } template<> boost::optional parseBase58 (TokenType type, std::string const& s); enum class ECDSACanonicality { canonical, fullyCanonical }; /** Determines the canonicality of a signature. A canonical signature is in its most reduced form. For example the R and S components do not contain additional leading zeroes. However, even in canonical form, (R,S) and (R,G-S) are both valid signatures for message M. Therefore, to prevent malleability attacks we define a fully canonical signature as one where: R < G - S where G is the curve order. This routine returns boost::none if the format of the signature is invalid (for example, the points are encoded incorrectly). @return boost::none if the signature fails validity checks. @note Only the format of the signature is checked, no verification cryptography is performed. */ boost::optional ecdsaCanonicality (Slice const& sig); /** Returns the type of public key. @return boost::none If the public key does not represent a known type. */ /** @{ */ boost::optional publicKeyType (Slice const& slice); inline boost::optional publicKeyType (PublicKey const& publicKey) { return publicKeyType (publicKey.slice()); } /** @} */ /** Verify a secp256k1 signature on the digest of a message. */ bool verifyDigest (PublicKey const& publicKey, uint256 const& digest, Slice const& sig, bool mustBeFullyCanonical = true); /** Verify a signature on a message. With secp256k1 signatures, the data is first hashed with SHA512-Half, and the resulting digest is signed. */ bool verify (PublicKey const& publicKey, Slice const& m, Slice const& sig, bool mustBeFullyCanonical = true); /** Calculate the 160-bit node ID from a node public key. */ NodeID calcNodeID (PublicKey const&); // VFALCO This belongs in AccountID.h but // is here because of header issues AccountID calcAccountID (PublicKey const& pk); } // ripple #endif