//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012, 2013 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #include #include namespace ripple { SHAMap::SHAMap(SHAMapType t, Family& f) : f_(f) , journal_(f.journal()) , seq_(1) , state_(SHAMapState::Modifying) , type_(t) { root_ = std::make_shared(seq_); } SHAMap::SHAMap(SHAMapType t, uint256 const& hash, Family& f) : f_(f) , journal_(f.journal()) , seq_(1) , state_(SHAMapState::Synching) , type_(t) { root_ = std::make_shared(seq_); } SHAMap::~SHAMap() { state_ = SHAMapState::Invalid; } std::shared_ptr SHAMap::snapShot(bool isMutable) const { auto ret = std::make_shared(type_, f_); SHAMap& newMap = *ret; if (!isMutable) newMap.state_ = SHAMapState::Immutable; newMap.seq_ = seq_ + 1; newMap.ledgerSeq_ = ledgerSeq_; newMap.root_ = root_; newMap.backed_ = backed_; if ((state_ != SHAMapState::Immutable) || (newMap.state_ != SHAMapState::Immutable)) { // If either map may change, they cannot share nodes newMap.unshare(); } return ret; } void SHAMap::dirtyUp( SharedPtrNodeStack& stack, uint256 const& target, std::shared_ptr child) { // walk the tree up from through the inner nodes to the root_ // update hashes and links // stack is a path of inner nodes up to, but not including, child // child can be an inner node or a leaf assert( (state_ != SHAMapState::Synching) && (state_ != SHAMapState::Immutable)); assert(child && (child->getSeq() == seq_)); while (!stack.empty()) { auto node = std::dynamic_pointer_cast(stack.top().first); SHAMapNodeID nodeID = stack.top().second; stack.pop(); assert(node != nullptr); int branch = nodeID.selectBranch(target); assert(branch >= 0); node = unshareNode(std::move(node), nodeID); node->setChild(branch, child); child = std::move(node); } } SHAMapTreeNode* SHAMap::walkTowardsKey(uint256 const& id, SharedPtrNodeStack* stack) const { assert(stack == nullptr || stack->empty()); auto inNode = root_; SHAMapNodeID nodeID; while (inNode->isInner()) { if (stack != nullptr) stack->push({inNode, nodeID}); auto const inner = std::static_pointer_cast(inNode); auto const branch = nodeID.selectBranch(id); if (inner->isEmptyBranch(branch)) return nullptr; inNode = descendThrow(inner, branch); nodeID = nodeID.getChildNodeID(branch); } if (stack != nullptr) stack->push({inNode, nodeID}); return static_cast(inNode.get()); } SHAMapTreeNode* SHAMap::findKey(uint256 const& id) const { SHAMapTreeNode* leaf = walkTowardsKey(id); if (leaf && leaf->peekItem()->key() != id) leaf = nullptr; return leaf; } std::shared_ptr SHAMap::fetchNodeFromDB(SHAMapHash const& hash) const { std::shared_ptr node; if (backed_) { if (auto obj = f_.db().fetch(hash.as_uint256(), ledgerSeq_)) { try { node = SHAMapAbstractNode::makeFromPrefix( makeSlice(obj->getData()), hash); if (node) canonicalize(hash, node); } catch (std::exception const&) { JLOG(journal_.warn()) << "Invalid DB node " << hash; return std::shared_ptr(); } } else if (full_) { f_.missing_node(ledgerSeq_); const_cast(full_) = false; } } return node; } // See if a sync filter has a node std::shared_ptr SHAMap::checkFilter(SHAMapHash const& hash, SHAMapSyncFilter* filter) const { if (auto nodeData = filter->getNode(hash)) { try { auto node = SHAMapAbstractNode::makeFromPrefix(makeSlice(*nodeData), hash); if (node) { filter->gotNode( true, hash, ledgerSeq_, std::move(*nodeData), node->getType()); if (backed_) canonicalize(hash, node); } return node; } catch (std::exception const& x) { JLOG(f_.journal().warn()) << "Invalid node/data, hash=" << hash << ": " << x.what(); } } return {}; } // Get a node without throwing // Used on maps where missing nodes are expected std::shared_ptr SHAMap::fetchNodeNT(SHAMapHash const& hash, SHAMapSyncFilter* filter) const { std::shared_ptr node = getCache(hash); if (node) return node; if (backed_) { node = fetchNodeFromDB(hash); if (node) { canonicalize(hash, node); return node; } } if (filter) node = checkFilter(hash, filter); return node; } std::shared_ptr SHAMap::fetchNodeNT(SHAMapHash const& hash) const { auto node = getCache(hash); if (!node && backed_) node = fetchNodeFromDB(hash); return node; } // Throw if the node is missing std::shared_ptr SHAMap::fetchNode(SHAMapHash const& hash) const { auto node = fetchNodeNT(hash); if (!node) Throw(type_, hash); return node; } SHAMapAbstractNode* SHAMap::descendThrow(SHAMapInnerNode* parent, int branch) const { SHAMapAbstractNode* ret = descend(parent, branch); if (!ret && !parent->isEmptyBranch(branch)) Throw(type_, parent->getChildHash(branch)); return ret; } std::shared_ptr SHAMap::descendThrow(std::shared_ptr const& parent, int branch) const { std::shared_ptr ret = descend(parent, branch); if (!ret && !parent->isEmptyBranch(branch)) Throw(type_, parent->getChildHash(branch)); return ret; } SHAMapAbstractNode* SHAMap::descend(SHAMapInnerNode* parent, int branch) const { SHAMapAbstractNode* ret = parent->getChildPointer(branch); if (ret || !backed_) return ret; std::shared_ptr node = fetchNodeNT(parent->getChildHash(branch)); if (!node) return nullptr; node = parent->canonicalizeChild(branch, std::move(node)); return node.get(); } std::shared_ptr SHAMap::descend(std::shared_ptr const& parent, int branch) const { std::shared_ptr node = parent->getChild(branch); if (node || !backed_) return node; node = fetchNode(parent->getChildHash(branch)); if (!node) return nullptr; node = parent->canonicalizeChild(branch, std::move(node)); return node; } // Gets the node that would be hooked to this branch, // but doesn't hook it up. std::shared_ptr SHAMap::descendNoStore( std::shared_ptr const& parent, int branch) const { std::shared_ptr ret = parent->getChild(branch); if (!ret && backed_) ret = fetchNode(parent->getChildHash(branch)); return ret; } std::pair SHAMap::descend( SHAMapInnerNode* parent, SHAMapNodeID const& parentID, int branch, SHAMapSyncFilter* filter) const { assert(parent->isInner()); assert((branch >= 0) && (branch < 16)); assert(!parent->isEmptyBranch(branch)); SHAMapAbstractNode* child = parent->getChildPointer(branch); auto const& childHash = parent->getChildHash(branch); if (!child) { std::shared_ptr childNode = fetchNodeNT(childHash, filter); if (childNode) { childNode = parent->canonicalizeChild(branch, std::move(childNode)); child = childNode.get(); } } return std::make_pair(child, parentID.getChildNodeID(branch)); } SHAMapAbstractNode* SHAMap::descendAsync( SHAMapInnerNode* parent, int branch, SHAMapSyncFilter* filter, bool& pending) const { pending = false; SHAMapAbstractNode* ret = parent->getChildPointer(branch); if (ret) return ret; auto const& hash = parent->getChildHash(branch); std::shared_ptr ptr = getCache(hash); if (!ptr) { if (filter) ptr = checkFilter(hash, filter); if (!ptr && backed_) { std::shared_ptr obj; if (!f_.db().asyncFetch(hash.as_uint256(), ledgerSeq_, obj)) { pending = true; return nullptr; } if (!obj) return nullptr; ptr = SHAMapAbstractNode::makeFromPrefix( makeSlice(obj->getData()), hash); if (ptr && backed_) canonicalize(hash, ptr); } } if (ptr) ptr = parent->canonicalizeChild(branch, std::move(ptr)); return ptr.get(); } template std::shared_ptr SHAMap::unshareNode(std::shared_ptr node, SHAMapNodeID const& nodeID) { // make sure the node is suitable for the intended operation (copy on write) assert(node->isValid()); assert(node->getSeq() <= seq_); if (node->getSeq() != seq_) { // have a CoW assert(state_ != SHAMapState::Immutable); node = std::static_pointer_cast(node->clone(seq_)); assert(node->isValid()); if (nodeID.isRoot()) root_ = node; } return node; } SHAMapTreeNode* SHAMap::firstBelow( std::shared_ptr node, SharedPtrNodeStack& stack, int branch) const { // Return the first item at or below this node if (node->isLeaf()) { auto n = std::static_pointer_cast(node); stack.push({node, {64, n->peekItem()->key()}}); return n.get(); } auto inner = std::static_pointer_cast(node); if (stack.empty()) stack.push({inner, SHAMapNodeID{}}); else stack.push({inner, stack.top().second.getChildNodeID(branch)}); for (int i = 0; i < 16;) { if (!inner->isEmptyBranch(i)) { node = descendThrow(inner, i); assert(!stack.empty()); if (node->isLeaf()) { auto n = std::static_pointer_cast(node); stack.push({n, {64, n->peekItem()->key()}}); return n.get(); } inner = std::static_pointer_cast(node); stack.push({inner, stack.top().second.getChildNodeID(branch)}); i = 0; // scan all 16 branches of this new node } else ++i; // scan next branch } return nullptr; } static const std::shared_ptr no_item; std::shared_ptr const& SHAMap::onlyBelow(SHAMapAbstractNode* node) const { // If there is only one item below this node, return it while (!node->isLeaf()) { SHAMapAbstractNode* nextNode = nullptr; auto inner = static_cast(node); for (int i = 0; i < 16; ++i) { if (!inner->isEmptyBranch(i)) { if (nextNode) return no_item; nextNode = descendThrow(inner, i); } } if (!nextNode) { assert(false); return no_item; } node = nextNode; } // An inner node must have at least one leaf // below it, unless it's the root_ auto leaf = static_cast(node); assert(leaf->hasItem() || (leaf == root_.get())); return leaf->peekItem(); } static std::shared_ptr const nullConstSHAMapItem; SHAMapTreeNode const* SHAMap::peekFirstItem(SharedPtrNodeStack& stack) const { assert(stack.empty()); SHAMapTreeNode* node = firstBelow(root_, stack); if (!node) { while (!stack.empty()) stack.pop(); return nullptr; } return node; } SHAMapTreeNode const* SHAMap::peekNextItem(uint256 const& id, SharedPtrNodeStack& stack) const { assert(!stack.empty()); assert(stack.top().first->isLeaf()); stack.pop(); while (!stack.empty()) { auto [node, nodeID] = stack.top(); assert(!node->isLeaf()); auto inner = std::static_pointer_cast(node); for (auto i = nodeID.selectBranch(id) + 1; i < 16; ++i) { if (!inner->isEmptyBranch(i)) { node = descendThrow(inner, i); auto leaf = firstBelow(node, stack, i); if (!leaf) Throw(type_, id); assert(leaf->isLeaf()); return leaf; } } stack.pop(); } // must be last item return nullptr; } std::shared_ptr const& SHAMap::peekItem(uint256 const& id) const { SHAMapTreeNode* leaf = findKey(id); if (!leaf) return no_item; return leaf->peekItem(); } std::shared_ptr const& SHAMap::peekItem(uint256 const& id, SHAMapTreeNode::TNType& type) const { SHAMapTreeNode* leaf = findKey(id); if (!leaf) return no_item; type = leaf->getType(); return leaf->peekItem(); } std::shared_ptr const& SHAMap::peekItem(uint256 const& id, SHAMapHash& hash) const { SHAMapTreeNode* leaf = findKey(id); if (!leaf) return no_item; hash = leaf->getNodeHash(); return leaf->peekItem(); } SHAMap::const_iterator SHAMap::upper_bound(uint256 const& id) const { // Get a const_iterator to the next item in the tree after a given item // item need not be in tree SharedPtrNodeStack stack; walkTowardsKey(id, &stack); while (!stack.empty()) { auto [node, nodeID] = stack.top(); if (node->isLeaf()) { auto leaf = static_cast(node.get()); if (leaf->peekItem()->key() > id) return const_iterator( this, leaf->peekItem().get(), std::move(stack)); } else { auto inner = std::static_pointer_cast(node); for (auto branch = nodeID.selectBranch(id) + 1; branch < 16; ++branch) { if (!inner->isEmptyBranch(branch)) { node = descendThrow(inner, branch); auto leaf = firstBelow(node, stack, branch); if (!leaf) Throw(type_, id); return const_iterator( this, leaf->peekItem().get(), std::move(stack)); } } } stack.pop(); } return end(); } bool SHAMap::hasItem(uint256 const& id) const { // does the tree have an item with this ID SHAMapTreeNode* leaf = findKey(id); return (leaf != nullptr); } bool SHAMap::delItem(uint256 const& id) { // delete the item with this ID assert(state_ != SHAMapState::Immutable); SharedPtrNodeStack stack; walkTowardsKey(id, &stack); if (stack.empty()) Throw(type_, id); auto leaf = std::dynamic_pointer_cast(stack.top().first); stack.pop(); if (!leaf || (leaf->peekItem()->key() != id)) return false; SHAMapTreeNode::TNType type = leaf->getType(); // What gets attached to the end of the chain // (For now, nothing, since we deleted the leaf) std::shared_ptr prevNode; while (!stack.empty()) { auto node = std::static_pointer_cast(stack.top().first); SHAMapNodeID nodeID = stack.top().second; stack.pop(); node = unshareNode(std::move(node), nodeID); node->setChild(nodeID.selectBranch(id), prevNode); if (!nodeID.isRoot()) { // we may have made this a node with 1 or 0 children // And, if so, we need to remove this branch const int bc = node->getBranchCount(); if (bc == 0) { // no children below this branch prevNode.reset(); } else if (bc == 1) { // If there's only one item, pull up on the thread auto item = onlyBelow(node.get()); if (item) { for (int i = 0; i < 16; ++i) { if (!node->isEmptyBranch(i)) { node->setChild(i, nullptr); break; } } prevNode = std::make_shared( item, type, node->getSeq()); } else { prevNode = std::move(node); } } else { // This node is now the end of the branch prevNode = std::move(node); } } } return true; } bool SHAMap::addGiveItem( std::shared_ptr item, bool isTransaction, bool hasMeta) { // add the specified item, does not update uint256 tag = item->key(); SHAMapTreeNode::TNType type = !isTransaction ? SHAMapTreeNode::tnACCOUNT_STATE : (hasMeta ? SHAMapTreeNode::tnTRANSACTION_MD : SHAMapTreeNode::tnTRANSACTION_NM); assert(state_ != SHAMapState::Immutable); SharedPtrNodeStack stack; walkTowardsKey(tag, &stack); if (stack.empty()) Throw(type_, tag); auto [node, nodeID] = stack.top(); stack.pop(); if (node->isLeaf()) { auto leaf = std::static_pointer_cast(node); if (leaf->peekItem()->key() == tag) return false; } node = unshareNode(std::move(node), nodeID); if (node->isInner()) { // easy case, we end on an inner node auto inner = std::static_pointer_cast(node); int branch = nodeID.selectBranch(tag); assert(inner->isEmptyBranch(branch)); auto newNode = std::make_shared(std::move(item), type, seq_); inner->setChild(branch, newNode); } else { // this is a leaf node that has to be made an inner node holding two // items auto leaf = std::static_pointer_cast(node); std::shared_ptr otherItem = leaf->peekItem(); assert(otherItem && (tag != otherItem->key())); node = std::make_shared(node->getSeq()); int b1, b2; while ((b1 = nodeID.selectBranch(tag)) == (b2 = nodeID.selectBranch(otherItem->key()))) { stack.push({node, nodeID}); // we need a new inner node, since both go on same branch at this // level nodeID = nodeID.getChildNodeID(b1); node = std::make_shared(seq_); } // we can add the two leaf nodes here assert(node->isInner()); std::shared_ptr newNode = std::make_shared(std::move(item), type, seq_); assert(newNode->isValid() && newNode->isLeaf()); auto inner = std::static_pointer_cast(node); inner->setChild(b1, newNode); newNode = std::make_shared(std::move(otherItem), type, seq_); assert(newNode->isValid() && newNode->isLeaf()); inner->setChild(b2, newNode); } dirtyUp(stack, tag, node); return true; } bool SHAMap::addItem(SHAMapItem&& i, bool isTransaction, bool hasMetaData) { return addGiveItem( std::make_shared(std::move(i)), isTransaction, hasMetaData); } SHAMapHash SHAMap::getHash() const { auto hash = root_->getNodeHash(); if (hash.isZero()) { const_cast(*this).unshare(); hash = root_->getNodeHash(); } return hash; } bool SHAMap::updateGiveItem( std::shared_ptr item, bool isTransaction, bool hasMeta) { // can't change the tag but can change the hash uint256 tag = item->key(); assert(state_ != SHAMapState::Immutable); SharedPtrNodeStack stack; walkTowardsKey(tag, &stack); if (stack.empty()) Throw(type_, tag); auto node = std::dynamic_pointer_cast(stack.top().first); auto nodeID = stack.top().second; stack.pop(); if (!node || (node->peekItem()->key() != tag)) { assert(false); return false; } node = unshareNode(std::move(node), nodeID); if (!node->setItem( std::move(item), !isTransaction ? SHAMapTreeNode::tnACCOUNT_STATE : (hasMeta ? SHAMapTreeNode::tnTRANSACTION_MD : SHAMapTreeNode::tnTRANSACTION_NM))) { JLOG(journal_.trace()) << "SHAMap setItem, no change"; return true; } dirtyUp(stack, tag, node); return true; } bool SHAMap::fetchRoot(SHAMapHash const& hash, SHAMapSyncFilter* filter) { if (hash == root_->getNodeHash()) return true; if (auto stream = journal_.trace()) { if (type_ == SHAMapType::TRANSACTION) { stream << "Fetch root TXN node " << hash; } else if (type_ == SHAMapType::STATE) { stream << "Fetch root STATE node " << hash; } else { stream << "Fetch root SHAMap node " << hash; } } auto newRoot = fetchNodeNT(hash, filter); if (newRoot) { root_ = newRoot; assert(root_->getNodeHash() == hash); return true; } return false; } // Replace a node with a shareable node. // // This code handles two cases: // // 1) An unshared, unshareable node needs to be made shareable // so immutable SHAMap's can have references to it. // // 2) An unshareable node is shared. This happens when you make // a mutable snapshot of a mutable SHAMap. std::shared_ptr SHAMap::writeNode( NodeObjectType t, std::uint32_t seq, std::shared_ptr node) const { // Node is ours, so we can just make it shareable assert(node->getSeq() == seq_); assert(backed_); node->setSeq(0); canonicalize(node->getNodeHash(), node); Serializer s; node->addRaw(s, snfPREFIX); f_.db().store( t, std::move(s.modData()), node->getNodeHash().as_uint256(), ledgerSeq_); return node; } // We can't modify an inner node someone else might have a // pointer to because flushing modifies inner nodes -- it // makes them point to canonical/shared nodes. template std::shared_ptr SHAMap::preFlushNode(std::shared_ptr node) const { // A shared node should never need to be flushed // because that would imply someone modified it assert(node->getSeq() != 0); if (node->getSeq() != seq_) { // Node is not uniquely ours, so unshare it before // possibly modifying it node = std::static_pointer_cast(node->clone(seq_)); } return node; } int SHAMap::unshare() { // Don't share nodes wth parent map return walkSubTree(false, hotUNKNOWN, 0); } /** Convert all modified nodes to shared nodes */ // If requested, write them to the node store int SHAMap::flushDirty(NodeObjectType t, std::uint32_t seq) { return walkSubTree(true, t, seq); } int SHAMap::walkSubTree(bool doWrite, NodeObjectType t, std::uint32_t seq) { int flushed = 0; Serializer s; if (!root_ || (root_->getSeq() == 0)) return flushed; if (root_->isLeaf()) { // special case -- root_ is leaf root_ = preFlushNode(std::move(root_)); root_->updateHash(); if (doWrite && backed_) root_ = writeNode(t, seq, std::move(root_)); else root_->setSeq(0); return 1; } auto node = std::static_pointer_cast(root_); if (node->isEmpty()) { // replace empty root with a new empty root root_ = std::make_shared(0); return 1; } // Stack of {parent,index,child} pointers representing // inner nodes we are in the process of flushing using StackEntry = std::pair, int>; std::stack> stack; node = preFlushNode(std::move(node)); int pos = 0; // We can't flush an inner node until we flush its children while (1) { while (pos < 16) { if (node->isEmptyBranch(pos)) { ++pos; } else { // No need to do I/O. If the node isn't linked, // it can't need to be flushed int branch = pos; auto child = node->getChild(pos++); if (child && (child->getSeq() != 0)) { // This is a node that needs to be flushed child = preFlushNode(std::move(child)); if (child->isInner()) { // save our place and work on this node stack.emplace(std::move(node), branch); // The semantics of this changes when we move to c++-20 // Right now no move will occur; With c++-20 child will // be moved from. node = std::static_pointer_cast( std::move(child)); pos = 0; } else { // flush this leaf ++flushed; assert(node->getSeq() == seq_); child->updateHash(); if (doWrite && backed_) child = writeNode(t, seq, std::move(child)); else child->setSeq(0); node->shareChild(branch, child); } } } } // update the hash of this inner node node->updateHashDeep(); // This inner node can now be shared if (doWrite && backed_) node = std::static_pointer_cast( writeNode(t, seq, std::move(node))); else node->setSeq(0); ++flushed; if (stack.empty()) break; auto parent = std::move(stack.top().first); pos = stack.top().second; stack.pop(); // Hook this inner node to its parent assert(parent->getSeq() == seq_); parent->shareChild(pos, node); // Continue with parent's next child, if any node = std::move(parent); ++pos; } // Last inner node is the new root_ root_ = std::move(node); return flushed; } void SHAMap::dump(bool hash) const { int leafCount = 0; JLOG(journal_.info()) << " MAP Contains"; std::stack> stack; stack.push({root_.get(), SHAMapNodeID()}); do { auto [node, nodeID] = stack.top(); stack.pop(); JLOG(journal_.info()) << node->getString(nodeID); if (hash) { JLOG(journal_.info()) << "Hash: " << node->getNodeHash(); } if (node->isInner()) { auto inner = static_cast(node); for (int i = 0; i < 16; ++i) { if (!inner->isEmptyBranch(i)) { auto child = inner->getChildPointer(i); if (child) { assert(child->getNodeHash() == inner->getChildHash(i)); stack.push({child, nodeID.getChildNodeID(i)}); } } } } else ++leafCount; } while (!stack.empty()); JLOG(journal_.info()) << leafCount << " resident leaves"; } std::shared_ptr SHAMap::getCache(SHAMapHash const& hash) const { auto ret = f_.treecache().fetch(hash.as_uint256()); assert(!ret || !ret->getSeq()); return ret; } void SHAMap::canonicalize( SHAMapHash const& hash, std::shared_ptr& node) const { assert(backed_); assert(node->getSeq() == 0); assert(node->getNodeHash() == hash); f_.treecache().canonicalize_replace_client(hash.as_uint256(), node); } void SHAMap::invariants() const { (void)getHash(); // update node hashes auto node = root_.get(); assert(node != nullptr); assert(!node->isLeaf()); SharedPtrNodeStack stack; for (auto leaf = peekFirstItem(stack); leaf != nullptr; leaf = peekNextItem(leaf->peekItem()->key(), stack)) ; node->invariants(true); } } // namespace ripple