#ifndef XRPL_CRYPTO_RANDOM_H_INCLUDED #define XRPL_CRYPTO_RANDOM_H_INCLUDED #include namespace ripple { /** A cryptographically secure random number engine The engine is thread-safe (it uses a lock to serialize access) and will, automatically, mix in some randomness from std::random_device. Meets the requirements of UniformRandomNumberEngine */ class csprng_engine { private: std::mutex mutex_; public: using result_type = std::uint64_t; csprng_engine(csprng_engine const&) = delete; csprng_engine& operator=(csprng_engine const&) = delete; csprng_engine(csprng_engine&&) = delete; csprng_engine& operator=(csprng_engine&&) = delete; csprng_engine(); ~csprng_engine(); /** Mix entropy into the pool */ void mix_entropy(void* buffer = nullptr, std::size_t count = 0); /** Generate a random integer */ result_type operator()(); /** Fill a buffer with the requested amount of random data */ void operator()(void* ptr, std::size_t count); /* The smallest possible value that can be returned */ static constexpr result_type min() { return std::numeric_limits::min(); } /* The largest possible value that can be returned */ static constexpr result_type max() { return std::numeric_limits::max(); } }; /** The default cryptographically secure PRNG Use this when you need to generate random numbers or data that will be used for encryption or passed into cryptographic routines. This meets the requirements of UniformRandomNumberEngine */ csprng_engine& crypto_prng(); } // namespace ripple #endif