//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012, 2013 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #include #include #include #include #include #include #include #include #include #include #include namespace ripple { class STObject_test : public beast::unit_test::suite { public: bool parseJSONString (std::string const& json, Json::Value& to) { Json::Reader reader; return reader.parse(json, to) && to.isObject(); } void testParseJSONArrayWithInvalidChildrenObjects () { testcase ("parse json array invalid children"); try { /* STArray/STObject constructs don't really map perfectly to json arrays/objects. STObject is an associative container, mapping fields to value, but an STObject may also have a Field as its name, stored outside the associative structure. The name is important, so to maintain fidelity, it will take TWO json objects to represent them. */ std::string faulty ("{\"Template\":[{" "\"ModifiedNode\":{\"Sequence\":1}, " "\"DeletedNode\":{\"Sequence\":1}" "}]}"); std::unique_ptr so; Json::Value faultyJson; bool parsedOK (parseJSONString(faulty, faultyJson)); unexpected(!parsedOK, "failed to parse"); STParsedJSONObject parsed ("test", faultyJson); BEAST_EXPECT(! parsed.object); } catch(std::runtime_error& e) { std::string what(e.what()); unexpected (what.find("First level children of `Template`") != 0); } } void testParseJSONArray () { testcase ("parse json array"); std::string const json ( "{\"Template\":[{\"ModifiedNode\":{\"Sequence\":1}}]}"); Json::Value jsonObject; bool parsedOK (parseJSONString(json, jsonObject)); if (parsedOK) { STParsedJSONObject parsed ("test", jsonObject); BEAST_EXPECT(parsed.object); std::string const& serialized ( to_string (parsed.object->getJson(0))); BEAST_EXPECT(serialized == json); } else { fail ("Couldn't parse json: " + json); } } void testParseJSONEdgeCases() { testcase("parse json object"); { std::string const goodJson( R"({"CloseResolution":19,"Method":250,)" R"("TransactionResult":"tecFROZEN"})"); Json::Value jv; if (BEAST_EXPECT(parseJSONString(goodJson, jv))) { STParsedJSONObject parsed("test", jv); if (BEAST_EXPECT(parsed.object)) { std::string const& serialized( to_string(parsed.object->getJson(0))); BEAST_EXPECT(serialized == goodJson); } } } { std::string const goodJson( R"({"CloseResolution":19,"Method":"250",)" R"("TransactionResult":"tecFROZEN"})"); std::string const expectedJson( R"({"CloseResolution":19,"Method":250,)" R"("TransactionResult":"tecFROZEN"})"); Json::Value jv; if (BEAST_EXPECT(parseJSONString(goodJson, jv))) { // Integer values are always parsed as int, // unless they're too big. We want a small uint. jv["CloseResolution"] = Json::UInt(19); STParsedJSONObject parsed("test", jv); if (BEAST_EXPECT(parsed.object)) { std::string const& serialized( to_string(parsed.object->getJson(0))); BEAST_EXPECT(serialized == expectedJson); } } } { std::string const json( R"({"CloseResolution":19,"Method":250,)" R"("TransactionResult":"terQUEUED"})"); Json::Value jv; if (BEAST_EXPECT(parseJSONString(json, jv))) { STParsedJSONObject parsed("test", jv); BEAST_EXPECT(!parsed.object); BEAST_EXPECT(parsed.error); BEAST_EXPECT(parsed.error[jss::error] == "invalidParams"); BEAST_EXPECT(parsed.error[jss::error_message] == "Field 'test.TransactionResult' is out of range."); } } { std::string const json( R"({"CloseResolution":19,"Method":"pony",)" R"("TransactionResult":"tesSUCCESS"})"); Json::Value jv; if (BEAST_EXPECT(parseJSONString(json, jv))) { STParsedJSONObject parsed("test", jv); BEAST_EXPECT(!parsed.object); BEAST_EXPECT(parsed.error); BEAST_EXPECT(parsed.error[jss::error] == "invalidParams"); BEAST_EXPECT(parsed.error[jss::error_message] == "Field 'test.Method' has bad type."); } } { std::string const json( R"({"CloseResolution":19,"Method":3294967296,)" R"("TransactionResult":"tesSUCCESS"})"); Json::Value jv; if (BEAST_EXPECT(parseJSONString(json, jv))) { STParsedJSONObject parsed("test", jv); BEAST_EXPECT(!parsed.object); BEAST_EXPECT(parsed.error); BEAST_EXPECT(parsed.error[jss::error] == "invalidParams"); BEAST_EXPECT(parsed.error[jss::error_message] == "Field 'test.Method' is out of range."); } } { std::string const json( R"({"CloseResolution":-10,"Method":42,)" R"("TransactionResult":"tesSUCCESS"})"); Json::Value jv; if (BEAST_EXPECT(parseJSONString(json, jv))) { STParsedJSONObject parsed("test", jv); BEAST_EXPECT(!parsed.object); BEAST_EXPECT(parsed.error); BEAST_EXPECT(parsed.error[jss::error] == "invalidParams"); BEAST_EXPECT(parsed.error[jss::error_message] == "Field 'test.CloseResolution' is out of range."); } } { std::string const json( R"({"CloseResolution":19,"Method":3.141592653,)" R"("TransactionResult":"tesSUCCESS"})"); Json::Value jv; if (BEAST_EXPECT(parseJSONString(json, jv))) { STParsedJSONObject parsed("test", jv); BEAST_EXPECT(!parsed.object); BEAST_EXPECT(parsed.error); BEAST_EXPECT(parsed.error[jss::error] == "invalidParams"); BEAST_EXPECT(parsed.error[jss::error_message] == "Field 'test.Method' has bad type."); } } } void testSerialization () { testcase ("serialization"); unexpected (sfGeneric.isUseful (), "sfGeneric must not be useful"); SField const& sfTestVL = SField::getField (STI_VL, 255); SField const& sfTestH256 = SField::getField (STI_HASH256, 255); SField const& sfTestU32 = SField::getField (STI_UINT32, 255); SField const& sfTestV256 = SField::getField(STI_VECTOR256, 255); SField const& sfTestObject = SField::getField (STI_OBJECT, 255); SOTemplate elements; elements.push_back (SOElement (sfFlags, SOE_REQUIRED)); elements.push_back (SOElement (sfTestVL, SOE_REQUIRED)); elements.push_back (SOElement (sfTestH256, SOE_OPTIONAL)); elements.push_back (SOElement (sfTestU32, SOE_REQUIRED)); elements.push_back (SOElement (sfTestV256, SOE_OPTIONAL)); STObject object1 (elements, sfTestObject); STObject object2 (object1); unexpected (object1.getSerializer () != object2.getSerializer (), "STObject error 1"); unexpected (object1.isFieldPresent (sfTestH256) || !object1.isFieldPresent (sfTestVL), "STObject error"); object1.makeFieldPresent (sfTestH256); unexpected (!object1.isFieldPresent (sfTestH256), "STObject Error 2"); unexpected (object1.getFieldH256 (sfTestH256) != uint256 (), "STObject error 3"); if (object1.getSerializer () == object2.getSerializer ()) { log << "O1: " << object1.getJson (0) << '\n' << "O2: " << object2.getJson (0) << std::endl; fail ("STObject error 4"); } else { pass (); } object1.makeFieldAbsent (sfTestH256); unexpected (object1.isFieldPresent (sfTestH256), "STObject error 5"); unexpected (object1.getFlags () != 0, "STObject error 6"); unexpected (object1.getSerializer () != object2.getSerializer (), "STObject error 7"); STObject copy (object1); unexpected (object1.isFieldPresent (sfTestH256), "STObject error 8"); unexpected (copy.isFieldPresent (sfTestH256), "STObject error 9"); unexpected (object1.getSerializer () != copy.getSerializer (), "STObject error 10"); copy.setFieldU32 (sfTestU32, 1); unexpected (object1.getSerializer () == copy.getSerializer (), "STObject error 11"); for (int i = 0; i < 1000; i++) { Blob j (i, 2); object1.setFieldVL (sfTestVL, j); Serializer s; object1.add (s); SerialIter it (s.slice()); STObject object3 (elements, it, sfTestObject); unexpected (object1.getFieldVL (sfTestVL) != j, "STObject error"); unexpected (object3.getFieldVL (sfTestVL) != j, "STObject error"); } { std::vector uints; uints.reserve(5); for (int i = 0; i < uints.capacity(); ++i) { uints.emplace_back(i); } object1.setFieldV256(sfTestV256, STVector256(uints)); Serializer s; object1.add(s); SerialIter it(s.slice()); STObject object3(elements, it, sfTestObject); auto const& uints1 = object1.getFieldV256(sfTestV256); auto const& uints3 = object3.getFieldV256(sfTestV256); BEAST_EXPECT(uints1 == uints3); } } // Exercise field accessors void testFields() { testcase ("fields"); auto const& sf1 = sfSequence; auto const& sf2 = sfExpiration; auto const& sf3 = sfQualityIn; auto const& sf4 = sfSignature; auto const& sf5 = sfPublicKey; // read free object { auto const st = [&]() { STObject st(sfGeneric); st.setFieldU32(sf1, 1); st.setFieldU32(sf2, 2); return st; }(); BEAST_EXPECT(st[sf1] == 1); BEAST_EXPECT(st[sf2] == 2); except([&]() { st[sf3]; }); BEAST_EXPECT(*st[~sf1] == 1); BEAST_EXPECT(*st[~sf2] == 2); BEAST_EXPECT(st[~sf3] == boost::none); BEAST_EXPECT(!! st[~sf1]); BEAST_EXPECT(!! st[~sf2]); BEAST_EXPECT(! st[~sf3]); BEAST_EXPECT(st[sf1] != st[sf2]); BEAST_EXPECT(st[~sf1] != st[~sf2]); } // read templated object auto const sot = [&]() { SOTemplate sot; sot.push_back(SOElement(sf1, SOE_REQUIRED)); sot.push_back(SOElement(sf2, SOE_OPTIONAL)); sot.push_back(SOElement(sf3, SOE_DEFAULT)); sot.push_back(SOElement(sf4, SOE_OPTIONAL)); sot.push_back(SOElement(sf5, SOE_DEFAULT)); return sot; }(); { auto const st = [&]() { STObject st(sot, sfGeneric); st.setFieldU32(sf1, 1); st.setFieldU32(sf2, 2); return st; }(); BEAST_EXPECT(st[sf1] == 1); BEAST_EXPECT(st[sf2] == 2); BEAST_EXPECT(st[sf3] == 0); BEAST_EXPECT(*st[~sf1] == 1); BEAST_EXPECT(*st[~sf2] == 2); BEAST_EXPECT(*st[~sf3] == 0); BEAST_EXPECT(!! st[~sf1]); BEAST_EXPECT(!! st[~sf2]); BEAST_EXPECT(!! st[~sf3]); } // write free object { STObject st(sfGeneric); unexcept([&]() { st[sf1]; }); except([&](){ return st[sf1] == 0; }); BEAST_EXPECT(st[~sf1] == boost::none); BEAST_EXPECT(st[~sf1] == boost::optional{}); BEAST_EXPECT(st[~sf1] != boost::optional(1)); BEAST_EXPECT(! st[~sf1]); st[sf1] = 2; BEAST_EXPECT(st[sf1] == 2); BEAST_EXPECT(st[~sf1] != boost::none); BEAST_EXPECT(st[~sf1] == boost::optional(2)); BEAST_EXPECT(!! st[~sf1]); st[sf1] = 1; BEAST_EXPECT(st[sf1] == 1); BEAST_EXPECT(!! st[sf1]); BEAST_EXPECT(!! st[~sf1]); st[sf1] = 0; BEAST_EXPECT(! st[sf1]); BEAST_EXPECT(!! st[~sf1]); st[~sf1] = boost::none; BEAST_EXPECT(! st[~sf1]); BEAST_EXPECT(st[~sf1] == boost::none); BEAST_EXPECT(st[~sf1] == boost::optional{}); st[~sf1] = boost::none; BEAST_EXPECT(! st[~sf1]); except([&]() { return st[sf1] == 0; }); except([&]() { return *st[~sf1]; }); st[sf1] = 1; BEAST_EXPECT(st[sf1] == 1); BEAST_EXPECT(!! st[sf1]); BEAST_EXPECT(!! st[~sf1]); st[sf1] = 3; st[sf2] = st[sf1]; BEAST_EXPECT(st[sf1] == 3); BEAST_EXPECT(st[sf2] == 3); BEAST_EXPECT(st[sf2] == st[sf1]); st[sf1] = 4; st[sf2] = st[sf1]; BEAST_EXPECT(st[sf1] == 4); BEAST_EXPECT(st[sf2] == 4); BEAST_EXPECT(st[sf2] == st[sf1]); } // Write templated object { STObject st(sot, sfGeneric); BEAST_EXPECT(!! st[~sf1]); BEAST_EXPECT(st[~sf1] != boost::none); BEAST_EXPECT(st[sf1] == 0); BEAST_EXPECT(*st[~sf1] == 0); BEAST_EXPECT(! st[~sf2]); BEAST_EXPECT(st[~sf2] == boost::none); except([&]() { return st[sf2] == 0; }); BEAST_EXPECT(!! st[~sf3]); BEAST_EXPECT(st[~sf3] != boost::none); BEAST_EXPECT(st[sf3] == 0); except([&]() { st[~sf1] = boost::none; }); st[sf1] = 1; BEAST_EXPECT(st[sf1] == 1); BEAST_EXPECT(*st[~sf1] == 1); BEAST_EXPECT(!! st[~sf1]); st[sf1] = 0; BEAST_EXPECT(st[sf1] == 0); BEAST_EXPECT(*st[~sf1] == 0); BEAST_EXPECT(!! st[~sf1]); st[sf2] = 2; BEAST_EXPECT(st[sf2] == 2); BEAST_EXPECT(*st[~sf2] == 2); BEAST_EXPECT(!! st[~sf2]); st[~sf2] = boost::none; except([&]() { return *st[~sf2]; }); BEAST_EXPECT(! st[~sf2]); st[sf3] = 3; BEAST_EXPECT(st[sf3] == 3); BEAST_EXPECT(*st[~sf3] == 3); BEAST_EXPECT(!! st[~sf3]); st[sf3] = 2; BEAST_EXPECT(st[sf3] == 2); BEAST_EXPECT(*st[~sf3] == 2); BEAST_EXPECT(!! st[~sf3]); st[sf3] = 0; BEAST_EXPECT(st[sf3] == 0); BEAST_EXPECT(*st[~sf3] == 0); BEAST_EXPECT(!! st[~sf3]); except([&]() { st[~sf3] = boost::none; }); BEAST_EXPECT(st[sf3] == 0); BEAST_EXPECT(*st[~sf3] == 0); BEAST_EXPECT(!! st[~sf3]); } // coercion operator to boost::optional { STObject st(sfGeneric); auto const v = ~st[~sf1]; static_assert(std::is_same< std::decay_t, boost::optional>::value, ""); } // UDT scalar fields { STObject st(sfGeneric); st[sfAmount] = STAmount{}; st[sfAccount] = AccountID{}; st[sfDigest] = uint256{}; [&](STAmount){}(st[sfAmount]); [&](AccountID){}(st[sfAccount]); [&](uint256){}(st[sfDigest]); } // STBlob and slice { { STObject st(sfGeneric); Buffer b(1); BEAST_EXPECT(! b.empty()); st[sf4] = std::move(b); BEAST_EXPECT(b.empty()); BEAST_EXPECT(Slice(st[sf4]).size() == 1); st[~sf4] = boost::none; BEAST_EXPECT(! ~st[~sf4]); b = Buffer{2}; st[sf4] = Slice(b); BEAST_EXPECT(b.size() == 2); BEAST_EXPECT(Slice(st[sf4]).size() == 2); st[sf5] = st[sf4]; BEAST_EXPECT(Slice(st[sf4]).size() == 2); BEAST_EXPECT(Slice(st[sf5]).size() == 2); } { STObject st(sot, sfGeneric); BEAST_EXPECT(st[sf5] == Slice{}); BEAST_EXPECT(!! st[~sf5]); BEAST_EXPECT(!! ~st[~sf5]); Buffer b(1); st[sf5] = std::move(b); BEAST_EXPECT(b.empty()); BEAST_EXPECT(Slice(st[sf5]).size() == 1); st[~sf4] = boost::none; BEAST_EXPECT(! ~st[~sf4]); } } // UDT blobs { STObject st(sfGeneric); BEAST_EXPECT(! st[~sf5]); auto const kp = generateKeyPair( KeyType::secp256k1, generateSeed("masterpassphrase")); st[sf5] = kp.first; BEAST_EXPECT(st[sf5] != PublicKey{}); st[~sf5] = boost::none; #if 0 pk = st[sf5]; BEAST_EXPECT(pk.size() == 0); #endif } // By reference fields { auto const& sf = sfIndexes; STObject st(sfGeneric); std::vector v; v.emplace_back(1); v.emplace_back(2); st[sf] = v; st[sf] = std::move(v); auto const& cst = st; BEAST_EXPECT(cst[sf].size() == 2); BEAST_EXPECT(cst[~sf]->size() == 2); BEAST_EXPECT(cst[sf][0] == 1); BEAST_EXPECT(cst[sf][1] == 2); static_assert(std::is_same const&>::value, ""); } // Default by reference field { auto const& sf1 = sfIndexes; auto const& sf2 = sfHashes; auto const& sf3 = sfAmendments; auto const sot = [&]() { SOTemplate sot; sot.push_back(SOElement(sf1, SOE_REQUIRED)); sot.push_back(SOElement(sf2, SOE_OPTIONAL)); sot.push_back(SOElement(sf3, SOE_DEFAULT)); return sot; }(); STObject st(sot, sfGeneric); auto const& cst(st); BEAST_EXPECT(cst[sf1].size() == 0); BEAST_EXPECT(! cst[~sf2]); BEAST_EXPECT(cst[sf3].size() == 0); std::vector v; v.emplace_back(1); st[sf1] = v; BEAST_EXPECT(cst[sf1].size() == 1); BEAST_EXPECT(cst[sf1][0] == uint256{1}); st[sf2] = v; BEAST_EXPECT(cst[sf2].size() == 1); BEAST_EXPECT(cst[sf2][0] == uint256{1}); st[~sf2] = boost::none; BEAST_EXPECT(! st[~sf2]); st[sf3] = v; BEAST_EXPECT(cst[sf3].size() == 1); BEAST_EXPECT(cst[sf3][0] == uint256{1}); st[sf3] = std::vector{}; BEAST_EXPECT(cst[sf3].size() == 0); } } void run() { // Instantiate a jtx::Env so debugLog writes are exercised. test::jtx::Env env (*this); testFields(); testSerialization(); testParseJSONArray(); testParseJSONArrayWithInvalidChildrenObjects(); testParseJSONEdgeCases(); } }; BEAST_DEFINE_TESTSUITE(STObject,protocol,ripple); } // ripple