//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2021 Ripple Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef RIPPLE_BASICS_SCOPE_H_INCLUDED #define RIPPLE_BASICS_SCOPE_H_INCLUDED #include #include #include #include #include namespace ripple { // RAII scope helpers. As specified in Library Fundamental, Version 3 // Basic design of idea: https://www.youtube.com/watch?v=WjTrfoiB0MQ // Specification: // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4873.html#scopeguard // This implementation deviates from the spec slightly: // The scope_exit and scope_fail constructors taking a functor are not // permitted to throw an exception. This was done because some compilers // did not like the superfluous try/catch in the common instantiations // where the construction was noexcept. Instead a static_assert is used // to enforce this restriction. template class scope_exit { EF exit_function_; bool execute_on_destruction_{true}; public: ~scope_exit() { if (execute_on_destruction_) exit_function_(); } scope_exit(scope_exit&& rhs) noexcept( std::is_nothrow_move_constructible_v || std::is_nothrow_copy_constructible_v) : exit_function_{std::forward(rhs.exit_function_)} , execute_on_destruction_{rhs.execute_on_destruction_} { rhs.release(); } scope_exit& operator=(scope_exit&&) = delete; template explicit scope_exit( EFP&& f, std::enable_if_t< !std::is_same_v, scope_exit> && std::is_constructible_v>* = 0) noexcept : exit_function_{std::forward(f)} { static_assert( std:: is_nothrow_constructible_v(f))>); } void release() noexcept { execute_on_destruction_ = false; } }; template scope_exit(EF) -> scope_exit; template class scope_fail { EF exit_function_; bool execute_on_destruction_{true}; int uncaught_on_creation_{std::uncaught_exceptions()}; public: ~scope_fail() { if (execute_on_destruction_ && std::uncaught_exceptions() > uncaught_on_creation_) exit_function_(); } scope_fail(scope_fail&& rhs) noexcept( std::is_nothrow_move_constructible_v || std::is_nothrow_copy_constructible_v) : exit_function_{std::forward(rhs.exit_function_)} , execute_on_destruction_{rhs.execute_on_destruction_} , uncaught_on_creation_{rhs.uncaught_on_creation_} { rhs.release(); } scope_fail& operator=(scope_fail&&) = delete; template explicit scope_fail( EFP&& f, std::enable_if_t< !std::is_same_v, scope_fail> && std::is_constructible_v>* = 0) noexcept : exit_function_{std::forward(f)} { static_assert( std:: is_nothrow_constructible_v(f))>); } void release() noexcept { execute_on_destruction_ = false; } }; template scope_fail(EF) -> scope_fail; template class scope_success { EF exit_function_; bool execute_on_destruction_{true}; int uncaught_on_creation_{std::uncaught_exceptions()}; public: ~scope_success() noexcept(noexcept(exit_function_())) { if (execute_on_destruction_ && std::uncaught_exceptions() <= uncaught_on_creation_) exit_function_(); } scope_success(scope_success&& rhs) noexcept( std::is_nothrow_move_constructible_v || std::is_nothrow_copy_constructible_v) : exit_function_{std::forward(rhs.exit_function_)} , execute_on_destruction_{rhs.execute_on_destruction_} , uncaught_on_creation_{rhs.uncaught_on_creation_} { rhs.release(); } scope_success& operator=(scope_success&&) = delete; template explicit scope_success( EFP&& f, std::enable_if_t< !std::is_same_v, scope_success> && std::is_constructible_v>* = 0) noexcept(std::is_nothrow_constructible_v || std::is_nothrow_constructible_v) : exit_function_{std::forward(f)} { } void release() noexcept { execute_on_destruction_ = false; } }; template scope_success(EF) -> scope_success; /** Automatically unlocks and re-locks a unique_lock object. This is the reverse of a std::unique_lock object - instead of locking the mutex for the lifetime of this object, it unlocks it. Make sure you don't try to unlock mutexes that aren't actually locked! This is essentially a less-versatile boost::reverse_lock. e.g. @code std::mutex mut; for (;;) { std::unique_lock myScopedLock{mut}; // mut is now locked ... do some stuff with it locked .. while (xyz) { ... do some stuff with it locked .. scope_unlock unlocker{myScopedLock}; // mut is now unlocked for the remainder of this block, // and re-locked at the end. ...do some stuff with it unlocked ... } // mut gets locked here. } // mut gets unlocked here @endcode */ template class scope_unlock { std::unique_lock* plock; public: explicit scope_unlock(std::unique_lock& lock) noexcept(true) : plock(&lock) { XRPL_ASSERT( plock->owns_lock(), "ripple::scope_unlock::scope_unlock : mutex must be locked"); plock->unlock(); } // Immovable type scope_unlock(scope_unlock const&) = delete; scope_unlock& operator=(scope_unlock const&) = delete; ~scope_unlock() noexcept(true) { plock->lock(); } }; template scope_unlock(std::unique_lock&) -> scope_unlock; } // namespace ripple #endif