#ifndef XRPL_PROTOCOL_PUBLICKEY_H_INCLUDED #define XRPL_PROTOCOL_PUBLICKEY_H_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include namespace ripple { /** A public key. Public keys are used in the public-key cryptography system used to verify signatures attached to messages. The format of the public key is Ripple specific, information needed to determine the cryptosystem parameters used is stored inside the key. As of this writing two systems are supported: secp256k1 ed25519 secp256k1 public keys consist of a 33 byte compressed public key, with the lead byte equal to 0x02 or 0x03. The ed25519 public keys consist of a 1 byte prefix constant 0xED, followed by 32 bytes of public key data. */ class PublicKey { protected: // All the constructed public keys are valid, non-empty and contain 33 // bytes of data. static constexpr std::size_t size_ = 33; std::uint8_t buf_[size_]; // should be large enough public: using const_iterator = std::uint8_t const*; public: PublicKey() = delete; PublicKey(PublicKey const& other); PublicKey& operator=(PublicKey const& other); /** Create a public key. Preconditions: publicKeyType(slice) != std::nullopt */ explicit PublicKey(Slice const& slice); std::uint8_t const* data() const noexcept { return buf_; } std::size_t size() const noexcept { return size_; } const_iterator begin() const noexcept { return buf_; } const_iterator cbegin() const noexcept { return buf_; } const_iterator end() const noexcept { return buf_ + size_; } const_iterator cend() const noexcept { return buf_ + size_; } Slice slice() const noexcept { return {buf_, size_}; } operator Slice() const noexcept { return slice(); } }; /** Print the public key to a stream. */ std::ostream& operator<<(std::ostream& os, PublicKey const& pk); inline bool operator==(PublicKey const& lhs, PublicKey const& rhs) { return std::memcmp(lhs.data(), rhs.data(), rhs.size()) == 0; } inline bool operator<(PublicKey const& lhs, PublicKey const& rhs) { return std::lexicographical_compare( lhs.data(), lhs.data() + lhs.size(), rhs.data(), rhs.data() + rhs.size()); } template void hash_append(Hasher& h, PublicKey const& pk) { h(pk.data(), pk.size()); } template <> struct STExchange { explicit STExchange() = default; using value_type = PublicKey; static void get(std::optional& t, STBlob const& u) { t.emplace(Slice(u.data(), u.size())); } static std::unique_ptr set(SField const& f, PublicKey const& t) { return std::make_unique(f, t.data(), t.size()); } }; //------------------------------------------------------------------------------ inline std::string toBase58(TokenType type, PublicKey const& pk) { return encodeBase58Token(type, pk.data(), pk.size()); } template <> std::optional parseBase58(TokenType type, std::string const& s); enum class ECDSACanonicality { canonical, fullyCanonical }; /** Determines the canonicality of a signature. A canonical signature is in its most reduced form. For example the R and S components do not contain additional leading zeroes. However, even in canonical form, (R,S) and (R,G-S) are both valid signatures for message M. Therefore, to prevent malleability attacks we define a fully canonical signature as one where: R < G - S where G is the curve order. This routine returns std::nullopt if the format of the signature is invalid (for example, the points are encoded incorrectly). @return std::nullopt if the signature fails validity checks. @note Only the format of the signature is checked, no verification cryptography is performed. */ std::optional ecdsaCanonicality(Slice const& sig); /** Returns the type of public key. @return std::nullopt If the public key does not represent a known type. */ /** @{ */ [[nodiscard]] std::optional publicKeyType(Slice const& slice); [[nodiscard]] inline std::optional publicKeyType(PublicKey const& publicKey) { return publicKeyType(publicKey.slice()); } /** @} */ /** Verify a secp256k1 signature on the digest of a message. */ [[nodiscard]] bool verifyDigest( PublicKey const& publicKey, uint256 const& digest, Slice const& sig, bool mustBeFullyCanonical = true) noexcept; /** Verify a signature on a message. With secp256k1 signatures, the data is first hashed with SHA512-Half, and the resulting digest is signed. */ [[nodiscard]] bool verify( PublicKey const& publicKey, Slice const& m, Slice const& sig, bool mustBeFullyCanonical = true) noexcept; /** Calculate the 160-bit node ID from a node public key. */ NodeID calcNodeID(PublicKey const&); // VFALCO This belongs in AccountID.h but // is here because of header issues AccountID calcAccountID(PublicKey const& pk); inline std::string getFingerprint( beast::IP::Endpoint const& address, std::optional const& publicKey = std::nullopt, std::optional const& id = std::nullopt) { std::stringstream ss; ss << "IP Address: " << address; if (publicKey.has_value()) { ss << ", Public Key: " << toBase58(TokenType::NodePublic, *publicKey); } if (id.has_value()) { ss << ", Id: " << id.value(); } return ss.str(); } } // namespace ripple //------------------------------------------------------------------------------ namespace Json { template <> inline ripple::PublicKey getOrThrow(Json::Value const& v, ripple::SField const& field) { using namespace ripple; std::string const b58 = getOrThrow(v, field); if (auto pubKeyBlob = strUnHex(b58); publicKeyType(makeSlice(*pubKeyBlob))) { return PublicKey{makeSlice(*pubKeyBlob)}; } for (auto const tokenType : {TokenType::NodePublic, TokenType::AccountPublic}) { if (auto const pk = parseBase58(tokenType, b58)) return *pk; } Throw(field.getJsonName(), "PublicKey"); } } // namespace Json #endif