* Expire validations faster based on when we first saw them.
* Never jump to a ledger prior to the latest fully-valid ledger
* Drop validations with signing times too far in the future immediately
Add a LedgerMaster function to get a ledger's
close time from either its hash or sequence number.
Use this function when adding the 'date' fields to
transaction JSON. This avoids constructing large numbers
of ledgers.
If we built a different ledger from the one we ultimately
validate, log the status of the consensus round. This will
make it easier to rule out transaction processing issues
as the cause of these discrepancies and generally make them
easier to diagnose.
* Move InboundTransactions to app/ledger
* Move TransactionAcquire to app/ledger
* Move LocalTxs to app/ledger
* Move Transaction to app/misc
* Move TransactionMaster to app/ledger
The first few transactions are added to the open ledger at
the base fee (ie. 10 drops). Once enough transactions are
added, the required fee will jump dramatically. If additional
transactions are added, the fee will grow exponentially.
Transactions that don't have a high enough fee to be applied to
the ledger are added to the queue in order from highest fee to
lowest. Whenever a new ledger is accepted as validated, transactions
are first applied from the queue to the open ledger in fee order
until either all transactions are applied or the fee again jumps
too high for the remaining transactions.
Current implementation is restricted to one transaction in the
queue per account. Some groundwork has been laid to expand in
the future.
Note that this fee logic escalates independently of the load-based
fee logic (ie. LoadFeeTrack). Submitted transactions must meet
the load fee to be considered for the queue, and must meet both
fees to be put into open ledger.
* Remove cxx14 compatibility layer from ripple
* Update travis to clang 3.6 and drop gcc 4.8
* Remove unneeded beast CXX14 defines
* Do not run clang build with gdb with travis
* Update circle ci to clang 3.6 & gcc-5
* Don't run rippled in gdb, clang builds crash gdb
* Staticly link libstdc++, boost, ssl, & protobuf
* Support builds on ubuntu 15.10
* All checks flow through ripple::checkValidity, which transparently caches result flags.
* All external transaction submission code paths use checkValidity.
* SF_SIGGOOD flag no longer appears outside of HashRouter / checkValidity.
* Validity can be forced in known or trusted scenarios.
* Sanely handled specified ledger in account_tx
* Reject un-validated ledger in account_tx
* Wait to publish a ledger until it's indexed
* Add unit test for PendingSaves
* Remove ripple::RippleMutex and ripple::RippleRecursiveMutex
and use std::mutex and std::recursive_mutex respectively.
* Use std::lock_guard instead of std::unique_lock when the
additional features of std::unique_lock are not needed.
* Avoid throwing in OrderBookDB::processTxn
* Fix missing space in debug output
* Avoid duplicate lock of PathRequest in updateAll
* Avoid shadowing in insertPathRequest
* Improve indentation in runOnCoroutine
* Remove extraneous space in ServerHandlerImp::processRequest
The server's open ledger is now an instance of the OpenView
class, managed by an instance of the OpenLedger class. This
should improve the performance of operations on open ledgers
because they are no longer Ledger/SHAMap operation.
* Consider ledgers incompatible based on last valid ledger
* Test against even ledgers not acquired yet
* Don't validate an incompatible ledger
* Don't switch to an incompatible ledger
* Protect against an unreasonably small quorum
This implements the tracking of when an amendment achieved a majority
in the ledger, ensuring that there's always network-wide agreement
on which amendments have achieved a majority and how long they've
held it.
* New fields
* Change transactor changes
* AmendmentTable API and implementation changes
* Update amendment enabled status on validated ledgers
* Reinstate support for ledger sequence in fee transactions
The View hierarchy of classes is reorganized to include new
classes with member functions moved and renamed, to solve
defects in the original design:
OpenView accumulates raw state and tx changes and
can be applied to the base. ApplyView accumulates changes
for a single transaction, including metadata, and can be
applied to an OpenView. The Sandbox allows changes with
the option to apply or throw them out. The PaymentSandbox
provides a sandbox with account credit deferral.
Call sites are changed to use the class appropriate for
the task.
The OpenLedger class encapsulates the functionality of
maintaining the open ledger. It uses an OpenView with the
last closed ledger as its base. Routines are provided to
modify the open ledger to add new transactions, and to
accept a new last closed ledger. Business logic for
performing transaction retries is rewritten to fit this
framework and used in the implementation of accept.
When the RIPPLE_OPEN_LEDGER macro is set to 1 (BeastConfig.h),
the global Application OpenLedger singleton maintains
its open ledger in parallel by applying new transactions
and accepting new last closed ledgers. In the current
implementation this does not affect transaction processing
but logs any differences in the results as compared to
the original code.
Logging shows an occasional mismatch in what the OpenLedger
builds versus the original code, usually an OfferCreate
which gets a terINSUF_RESERVE instead of tesSUCCESS.
This tidies up the View interface and makes transaction
application a free function, with the removal of the
TransactionEngine class. A new class ApplyContext provides
all the state information needed to apply a Transactor. The
Transactor is refactored to perform all the processing
activities previously part of TransactionEngine.
The calculation of metadata from a MetaView is improved.
A new apply function performs all the steps for calculating
and inserting metadata into the tx map.
Transaction processing code path is passed a Config instead
of retrieving the global, and uses the Journal supplied in
the call to apply() consistently.
To support transaction processing and RPC operations, a
new POD type ViewInfo is added which consolidates static
information about open and closed ledgers, such as the ledger
sequence number or the closing times. Ledger and MetaView are
refactored to use this info.
The ViewInfo now contains the "open ledger" setting. The
tapOPEN_LEDGER ViewFlag is removed. The view property of
being an open ledger is obtained from the base or by using
the MetaView constructor which presents a closed ledger as
an open one.
View, MetaView:
* Fix missing includes
* Add apply free function
* Use Journal in TransactionEngine
* Use BasicView in TransactionEngine
* inline NetworkOPs::batchApply
* Add shallow_copy, open_ledger MetaView ctor tags
* Add ViewInfo with open flag, seq, close times
* Make parent_ a reference
* Tidy up ctor arguments and base_ name
* Remove tapOPEN_LEDGER
* add assert to MetaView::apply
* ViewInfo comment
* Throw, pass Journal in txInsert
* Add BasicView::txCount
TransactionEngine:
* Add apply
* Make TransactionEngine private
* Refactor MetaView::apply and apply()
* Rename to TxMeta
* Refactor treatment of metadata in MetaView, TransactionEngine
* Rename to ApplyContext
* Use ApplyContext& in Transactor
* Pass Config in ApplyContext
* Declare Transactor classes in headers
* Use view flags in Transactor
This shores up the View interface support for contextual
transaction processing by putting params in the View, and
provides support for replacing the open ledger with the
open MetaView.
Transaction metadata is now part of the View interface.
Stacked MetaViews correctly apply their transaction
metadata to the parent.
* Add lastCloseTime to View
* Add insertTx to View, implement in MetaView
* Add View::txExists for transaction checking
* Add Fees to View, cache fees in Ledger and MetaView
* Use ViewFlags in View
* Use tapENABLE_TESTING flag for features
* Use cached Fees in View
* Rename to ViewFlags
* Move FreezeHandling to View.h, remove ViewAPIBasics.h
* Remove BasicView::parent hack
* Remove calls to getLedger in Transactors
Classes implementing the consensus process on Ripple are cleaned
up in preparation for modularizations and compartmentalization.
Functions and state related to inter-round consensus are moved out
of NetworkOPs and into Consensus, where they are more effectively
isolated.
Some member functions are changed to free functions and some free
functions have their scope reduced to specific translation units.
* Track inter-round consensus state using new Consensus object
* Devirtualize interfaces
* Reduce NetworkOPs, Consensus and LedgerConsensus interfaces
* Add comments
Member functions and free functions on Ledger and LedgerEntrySet are
rewritten in terms of new abstract interfaces `BasicView` and `View`,
representing the set of non-decomposable primitives necessary to read
and write state map items in a ledger, and to overlay a discardable
view onto a Ledger that can calculate metadata during transaction
processing. const-correctness is enforced through the parameter and
return types.
The MetaView now supports multi-level stacking: A MetaView can be
stacked on top of either a Ledger or another MetaView, up to any
number of levels.
The getSLEi member function is removed. The CachedView wrapper
replaces it, wrapping a View such that any function called with a
CachedView will go through the SLECache.
* Add BasicView, View, CachedView
* Rename LedgerEntrySet to MetaView
* Factor out free functions
* Consolidate free functions in ViewAPI
* Remove unused class members and free functions