Fixes: RIPD-1574
Alias beast address classes to the asio equivalents. Adjust users of
address classes accordingly. Fix resolver class so that it can support
ipv6 addresses. Make unit tests use ipv6 localhost network. Extend
endpoint peer message to support string endpoint
representations while also supporting the existing fields (both are
optional/repeated types). Expand test for Livecache and Endpoint.
Workaround some false positive ipaddr tests on windows (asio bug?)
Replaced usage of address::from_string(deprecated) with free function
make_address. Identified a remaining use of v4 address type and
replaced with the more appropriate IPEndpoint type (rpc_ip cmdline
option). Add CLI flag for using ipv4 with unit tests.
Release Notes
-------------
The optional rpc_port command line flag is deprecated. The rpc_ip
parameter now works as documented and accepts ip and port combined.
* The compiler can provide many non-explicit constructors for
aggregate types. This is sometimes desired, but it can
happen accidentally, resulting in run-time errors.
* This commit assures that no types are aggregates unless existing
code is using aggregate initialization.
Make sure statically-configured bootcache entries have at least
a reasonable minimum priority. This provides additional protection
against Sybil attacks.
Show the bootcache in the ouput of the print command.
Replace Journal public data members with member function accessors
in order to make Journal lighter weight. The change makes a
Journal cheaper to pass by value.
Also add missing stream checks (e.g., calls to JLOG) to avoid
text processing that ultimately will not be stored in the log.
The Journal API is affected. There are two uses for the
Journal::Severity enum:
o It is used to declare a threshold which log messages must meet
in order to be logged.
o It declares the current logging level which will be compared
to the threshold.
Those uses that affect the threshold are now named threshold()
rather than severity() to make the uses easier to distinguish.
Additionally, Journal no longer carries a Severity variable.
All handling of the threshold() is now delegated to the
Journal::Sink.
Sinks are no longer constructed with a default threshold of
kWarning; their threshold must be passed in on construction.
The RippleAddress class was used to represent a number of fundamentally
different types: account public keys, account secret keys, node public
keys, node secret keys, seeds and generators.
The class is replaced by the following types:
* PublicKey for account and node public keys
* SecretKey for account and node private keys
* Generator for generating secp256k1 accounts
* Seed for account, node and generator seeds
* A new, unified interface for generating random numbers and
filling buffers supporting any engine that fits the
UniformRandomNumberGenerator concept;
* Automatically seeded replacement for rand using the fast
xorshift+ PRNG engine;
* A CSPRNG engine that can be used with the new framework
when needing to to generate cryptographically secure
randomness.
* Unit test cleanups to work with new engine.
Multiple servers behind NAT might share a single public IP, making it
difficult for them to connect to the Ripple network since multiple
incoming connections from the same non-private IP are currently not
allowed.
RippleD now automatically allows between 2 and 5 incoming connections,
from the same public IP based on the total number of peers that it is
configured to accept.
Administrators can manually change the limit by adding an "ip_limit"
key value pair in the [overlay] stanza of the configuration file and
specifying a positive non-zero number. For example:
[overlay]
ip_limit=3
The previous "one connection per IP" strategy can be emulated by
setting "ip_limit" to 1.
The implementation imposes both soft and hard upper limits and will
adjust the value so that a single IP cannot consume all inbound slots.
* Remove cxx14 compatibility layer from ripple
* Update travis to clang 3.6 and drop gcc 4.8
* Remove unneeded beast CXX14 defines
* Do not run clang build with gdb with travis
* Update circle ci to clang 3.6 & gcc-5
* Don't run rippled in gdb, clang builds crash gdb
* Staticly link libstdc++, boost, ssl, & protobuf
* Support builds on ubuntu 15.10
* Each peer has a "sane/insane/unknown" status
* Status updated based on peer ledger sequence
* Status reported in peer json
* Only sane peers preferred for historical ledgers
* Overlay endpoints only accepted from known sane peers
* Untrusted proposals not relayed from insane peers
* Untrusted validations not relayed from insane peers
* Transactions from insane peers are not processed
* Periodically drop outbound connections to bad peers
* Bad peers get bootcache valence of zero
Peer "sanity" is based on the ledger sequence number they are on. We
quickly become able to assess this based on current trusted validations.
We quarrantine rogue messages and disconnect bad outbound connections to
help maintain the configured number of good outbound connections.
* Brings the soci subtree into rippled.
* Validator, peerfinder, and SHAMapStore use new soci backend.
* Optional postgresql backend for soci (if POSTGRESQL_ROOT env var is set).
Legacy workarounds for Visual Studio non thread-safe initialization
of function local objects with static storage duration are removed:
* Remove LeakChecked
* Remove StaticObject
* Remove SharedSingleton
This adds support for a cgi /crawl request, issued over HTTPS to the configured
peer protocol port. The response to the request is a JSON object containing
the node public key, type, and IP address of each directly connected neighbor.
The IP address is suppressed unless the neighbor has requested its address
to be revealed by adding "Crawl: public" to its HTTP headers. This field is
currently set by the peer_private option in the rippled.cfg file.
An alternative to the unity build, the classic build compiles each
translation unit individually. This adds more modules to the classic build:
* Remove unity header app.h
* Add missing includes as needed
* Remove obsolete NodeStore backend code
* Add app/, core/, crypto/, json/, net/, overlay/, peerfinder/ to classic build
Source files are split to place all unit test code into translation
units ending in .test.cpp with no other business logic in the same file,
and in directories named "test".
A new target is added to the SConstruct, invoked by:
scons count
This prints the total number of source code lines occupied by unit tests,
in rippled specific code and excluding library subtrees.
This implements the bare minimum necessary to store a 33 byte public
key and use it in ordered containers. It is an efficient and well
defined alternative to RippleAddress when the caller only needs
a node public key.
The abstract_clock is now templated on a type meeting the requirements of
the Clock concept. It inherits the nested types of the Clock on which it
is based. This resolves a problem with the original design which broke the
type-safety of time_point from different abstract clocks.
This introduces a considerable change in the way that peers handshake. Instead
of sending the TMHello protocol message, the peer making the connection (client
role) sends an HTTP Upgrade request along with some special headers. The peer
acting in the server role sends an HTTP response completing the upgrade and
transition to RTXP (Ripple Transaction Protocol, a.k.a. peer protocol). If the
server has no available slots, then it sends a 503 Service Unavailable HTTP
response with a JSON content-body containing IP addresses of other servers to
try. The information that was previously contained in the TMHello message is
now communicated in the HTTP request and HTTP response including the secure
cookie to prevent man in the middle attacks. This information is documented
in the overlay README.md file.
To prevent disruption on the network, the handshake feature is rolled out in
two parts. This is part 1, where new servents acting in the client role will
send the old style TMHello handshake, and new servents acting in the server
role can automatically detect and accept both the old style TMHello handshake,
or the HTTP request accordingly. This detection happens in the Server module,
which supports the universal port. An experimental .cfg setting allows clients
to instead send HTTP handshakes when establishing peer connections. When this
code has reached a significant fraction of the network, these clients will be
able to establish a connection to the Ripple network using HTTP handshakes.
These changes clean up the handling of the socket for peers. It fixes a long
standing bug in the graceful close sequence, where remaining data such as the
IP addresses of other servers to try, did not get sent. Redundant state
variables for the peer are removed and the treatment of completion handlers is
streamlined. The treatment of SSL short reads and secure shutdown is also fixed.
Logging for the peers in the overlay module are divided into two partitions:
"Peer" and "Protocol". The Peer partition records activity taking place on the
socket while the Protocol partition informs about RTXP specific actions such as
transaction relay, fetch packs, and consensus rounds. The severity on the log
partitions may be adjusted independently to diagnose problems. Every log
message for peers is prefixed with a small, unique integer id in brackets,
to accurately associate log messages with peers.
HTTP handshaking is the first step in implementing the Hub and Spoke feature,
which transforms the network from a homogeneous network where all peers are
the same, into a structured network where peers with above average capabilities
in their ability to process ledgers and transactions self-assemble to form a
backbone of high powered machines which in turn serve a much larger number of
'leaves' with lower capacities with a goal to improve the number of
transactions that may be retired over time.