Specially crafted messages could cause the server to buffer large
amounts of memory which could increase memory pressure.
This commit changes how messages are buffered and imposes a limit
on the amount of data that the server is willing to buffer.
Acknowledgements:
Aaron Hook for responsibly disclosing this issue.
Bug Bounties and Responsible Disclosures:
We welcome reviews of the rippled code and urge researchers to
responsibly disclose any issues they may find. For information
on Ripple's Bug Bounty program, please visit:
https://ripple.com/bug-bounty
* Remove cxx14 compatibility layer from ripple
* Update travis to clang 3.6 and drop gcc 4.8
* Remove unneeded beast CXX14 defines
* Do not run clang build with gdb with travis
* Update circle ci to clang 3.6 & gcc-5
* Don't run rippled in gdb, clang builds crash gdb
* Staticly link libstdc++, boost, ssl, & protobuf
* Support builds on ubuntu 15.10
All of the logic for establishing an outbound peer connection including
the initial HTTP handshake exchange is moved into a separate class. This
allows PeerImp to have a strong invariant: All PeerImp objects that exist
represent active peer connections that have already gone through the
handshake process.
This replaces the stateful class parser with a stateless free function.
The protocol buffer message is parsed using a ZeroCopyInputStream.
* Invoke method is now a free function.
* Protocol handler doesn't need to derive from an abstract interface
* Only up to one message is processed at a time by the invoker.
* Remove error_code return from the handler's message processing functions.
* Add ZeroCopyInputStream implementation that wraps a BufferSequence.
* Free function parses up to one protocol message and calls the handler.
* Message type and size can be calculated from an iterator
range or a buffer sequence.