mirror of
https://github.com/XRPLF/rippled.git
synced 2025-12-06 17:27:55 +00:00
Moved cpp code to src/cpp and js code to src/js.
This commit is contained in:
297
src/cpp/ripple/key.h
Normal file
297
src/cpp/ripple/key.h
Normal file
@@ -0,0 +1,297 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2011 The Bitcoin developers
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
|
||||
#ifndef BITCOIN_KEY_H
|
||||
#define BITCOIN_KEY_H
|
||||
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
#include <openssl/ec.h>
|
||||
#include <openssl/ecdsa.h>
|
||||
#include <openssl/obj_mac.h>
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
|
||||
#include "SecureAllocator.h"
|
||||
#include "RippleAddress.h"
|
||||
#include "uint256.h"
|
||||
#include "base58.h"
|
||||
|
||||
// secp256k1:
|
||||
// const unsigned int PRIVATE_KEY_SIZE = 279;
|
||||
// const unsigned int PUBLIC_KEY_SIZE = 65; // but we don't use full keys
|
||||
// const unsigned int COMPUB_KEY_SIZE = 33;
|
||||
// const unsigned int SIGNATURE_SIZE = 72;
|
||||
//
|
||||
// see www.keylength.com
|
||||
// script supports up to 75 for single byte push
|
||||
|
||||
int static inline EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
|
||||
{
|
||||
int okay = 0;
|
||||
BN_CTX *ctx = NULL;
|
||||
EC_POINT *pub_key = NULL;
|
||||
|
||||
if (!eckey) return 0;
|
||||
|
||||
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
||||
|
||||
if ((ctx = BN_CTX_new()) == NULL)
|
||||
goto err;
|
||||
|
||||
pub_key = EC_POINT_new(group);
|
||||
|
||||
if (pub_key == NULL)
|
||||
goto err;
|
||||
|
||||
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
|
||||
goto err;
|
||||
|
||||
EC_KEY_set_conv_form(eckey, POINT_CONVERSION_COMPRESSED);
|
||||
EC_KEY_set_private_key(eckey, priv_key);
|
||||
EC_KEY_set_public_key(eckey, pub_key);
|
||||
|
||||
okay = 1;
|
||||
|
||||
err:
|
||||
|
||||
if (pub_key)
|
||||
EC_POINT_free(pub_key);
|
||||
if (ctx != NULL)
|
||||
BN_CTX_free(ctx);
|
||||
|
||||
return (okay);
|
||||
}
|
||||
|
||||
|
||||
class key_error : public std::runtime_error
|
||||
{
|
||||
public:
|
||||
explicit key_error(const std::string& str) : std::runtime_error(str) {}
|
||||
};
|
||||
|
||||
//JED: typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
|
||||
//typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;
|
||||
|
||||
typedef std::vector<unsigned char> CPrivKey;
|
||||
typedef std::vector<unsigned char> CSecret;
|
||||
class CKey
|
||||
{
|
||||
protected:
|
||||
EC_KEY* pkey;
|
||||
bool fSet;
|
||||
|
||||
|
||||
public:
|
||||
typedef boost::shared_ptr<CKey> pointer;
|
||||
|
||||
CKey()
|
||||
{
|
||||
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||||
EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED);
|
||||
if (pkey == NULL)
|
||||
throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed");
|
||||
fSet = false;
|
||||
}
|
||||
|
||||
CKey(const CKey& b)
|
||||
{
|
||||
pkey = EC_KEY_dup(b.pkey);
|
||||
EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED);
|
||||
if (pkey == NULL)
|
||||
throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed");
|
||||
fSet = b.fSet;
|
||||
}
|
||||
|
||||
CKey& operator=(const CKey& b)
|
||||
{
|
||||
if (!EC_KEY_copy(pkey, b.pkey))
|
||||
throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed");
|
||||
fSet = b.fSet;
|
||||
return (*this);
|
||||
}
|
||||
|
||||
|
||||
~CKey()
|
||||
{
|
||||
EC_KEY_free(pkey);
|
||||
}
|
||||
|
||||
|
||||
static uint128 PassPhraseToKey(const std::string& passPhrase);
|
||||
static EC_KEY* GenerateRootDeterministicKey(const uint128& passPhrase);
|
||||
static EC_KEY* GenerateRootPubKey(BIGNUM* pubGenerator);
|
||||
static EC_KEY* GeneratePublicDeterministicKey(const RippleAddress& generator, int n);
|
||||
static EC_KEY* GeneratePrivateDeterministicKey(const RippleAddress& family, const BIGNUM* rootPriv, int n);
|
||||
static EC_KEY* GeneratePrivateDeterministicKey(const RippleAddress& family, const uint256& rootPriv, int n);
|
||||
|
||||
CKey(const uint128& passPhrase) : fSet(false)
|
||||
{
|
||||
pkey = GenerateRootDeterministicKey(passPhrase);
|
||||
fSet = true;
|
||||
assert(pkey);
|
||||
}
|
||||
|
||||
CKey(const RippleAddress& generator, int n) : fSet(false)
|
||||
{ // public deterministic key
|
||||
pkey = GeneratePublicDeterministicKey(generator, n);
|
||||
fSet = true;
|
||||
assert(pkey);
|
||||
}
|
||||
|
||||
CKey(const RippleAddress& base, const BIGNUM* rootPrivKey, int n) : fSet(false)
|
||||
{ // private deterministic key
|
||||
pkey = GeneratePrivateDeterministicKey(base, rootPrivKey, n);
|
||||
fSet = true;
|
||||
assert(pkey);
|
||||
}
|
||||
|
||||
CKey(const uint256& privateKey) : pkey(NULL), fSet(false)
|
||||
{
|
||||
// XXX Broken pkey is null.
|
||||
SetPrivateKeyU(privateKey);
|
||||
}
|
||||
|
||||
#if 0
|
||||
CKey(const RippleAddress& masterKey, int keyNum, bool isPublic) : pkey(NULL), fSet(false)
|
||||
{
|
||||
if (isPublic)
|
||||
SetPubSeq(masterKey, keyNum);
|
||||
else
|
||||
SetPrivSeq(masterKey, keyNum); // broken, need seed
|
||||
fSet = true;
|
||||
}
|
||||
#endif
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
return !fSet;
|
||||
}
|
||||
|
||||
void MakeNewKey()
|
||||
{
|
||||
if (!EC_KEY_generate_key(pkey))
|
||||
throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed");
|
||||
EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED);
|
||||
fSet = true;
|
||||
}
|
||||
|
||||
// XXX Still used!
|
||||
BIGNUM* GetSecretBN() const
|
||||
{ // DEPRECATED
|
||||
return BN_dup(EC_KEY_get0_private_key(pkey));
|
||||
}
|
||||
|
||||
void GetPrivateKeyU(uint256& privKey)
|
||||
{
|
||||
const BIGNUM* bn = EC_KEY_get0_private_key(pkey);
|
||||
if (bn == NULL)
|
||||
throw key_error("CKey::GetPrivateKeyU: EC_KEY_get0_private_key failed");
|
||||
privKey.zero();
|
||||
BN_bn2bin(bn, privKey.begin() + (privKey.size() - BN_num_bytes(bn)));
|
||||
}
|
||||
|
||||
bool SetPrivateKeyU(const uint256& key, bool bThrow=false)
|
||||
{
|
||||
// XXX Broken if pkey is not set.
|
||||
BIGNUM* bn = BN_bin2bn(key.begin(), key.size(), NULL);
|
||||
bool bSuccess = !!EC_KEY_set_private_key(pkey, bn);
|
||||
|
||||
BN_clear_free(bn);
|
||||
|
||||
if (bSuccess)
|
||||
{
|
||||
fSet = true;
|
||||
}
|
||||
else if (bThrow)
|
||||
{
|
||||
throw key_error("CKey::SetPrivateKeyU: EC_KEY_set_private_key failed");
|
||||
}
|
||||
|
||||
return bSuccess;
|
||||
}
|
||||
|
||||
bool SetPubKey(const void *ptr, size_t len)
|
||||
{
|
||||
const unsigned char* pbegin = static_cast<const unsigned char *>(ptr);
|
||||
if (!o2i_ECPublicKey(&pkey, &pbegin, len))
|
||||
return false;
|
||||
EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED);
|
||||
fSet = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool SetPubKey(const std::vector<unsigned char>& vchPubKey)
|
||||
{
|
||||
return SetPubKey(&vchPubKey[0], vchPubKey.size());
|
||||
}
|
||||
|
||||
bool SetPubKey(const std::string& pubKey)
|
||||
{
|
||||
return SetPubKey(pubKey.data(), pubKey.size());
|
||||
}
|
||||
|
||||
std::vector<unsigned char> GetPubKey() const
|
||||
{
|
||||
unsigned int nSize = i2o_ECPublicKey(pkey, NULL);
|
||||
assert(nSize<=33);
|
||||
if (!nSize)
|
||||
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed");
|
||||
std::vector<unsigned char> vchPubKey(33, 0);
|
||||
unsigned char* pbegin = &vchPubKey[0];
|
||||
if (i2o_ECPublicKey(pkey, &pbegin) != nSize)
|
||||
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size");
|
||||
assert(vchPubKey.size()<=33);
|
||||
return vchPubKey;
|
||||
}
|
||||
|
||||
bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig)
|
||||
{
|
||||
unsigned char pchSig[10000];
|
||||
unsigned int nSize = 0;
|
||||
|
||||
vchSig.clear();
|
||||
|
||||
if (!ECDSA_sign(0, (unsigned char*)hash.begin(), hash.size(), pchSig, &nSize, pkey))
|
||||
return false;
|
||||
|
||||
vchSig.resize(nSize);
|
||||
memcpy(&vchSig[0], pchSig, nSize);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Verify(const uint256& hash, const void *sig, size_t sigLen) const
|
||||
{
|
||||
// -1 = error, 0 = bad sig, 1 = good
|
||||
if (ECDSA_verify(0, hash.begin(), hash.size(), (const unsigned char *) sig, sigLen, pkey) != 1)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Verify(const uint256& hash, const std::vector<unsigned char>& vchSig) const
|
||||
{
|
||||
return Verify(hash, &vchSig[0], vchSig.size());
|
||||
}
|
||||
|
||||
bool Verify(const uint256& hash, const std::string& sig) const
|
||||
{
|
||||
return Verify(hash, sig.data(), sig.size());
|
||||
}
|
||||
|
||||
// ECIES functions. These throw on failure
|
||||
|
||||
// returns a 32-byte secret unique to these two keys. At least one private key must be known.
|
||||
void getECIESSecret(CKey& otherKey, uint256& enc_key, uint256& hmac_key);
|
||||
|
||||
// encrypt/decrypt functions with integrity checking.
|
||||
// Note that the other side must somehow know what keys to use
|
||||
std::vector<unsigned char> encryptECIES(CKey& otherKey, const std::vector<unsigned char>& plaintext);
|
||||
std::vector<unsigned char> decryptECIES(CKey& otherKey, const std::vector<unsigned char>& ciphertext);
|
||||
};
|
||||
|
||||
#endif
|
||||
// vim:ts=4
|
||||
Reference in New Issue
Block a user