Complete ECIES functions. (Untested.)

This commit is contained in:
JoelKatz
2012-04-05 18:13:07 -07:00
parent af800ffe14
commit d2d6f12745

View File

@@ -11,12 +11,21 @@
#include "key.h" #include "key.h"
#define ECIES_KEY_HASH SHA256
#define ECIES_KEY_LENGTH (256/8)
#define ECIES_ENC_ALGO EVP_aes_256_cbc()
#define ECIES_ENC_SIZE (256/8)
#define ECIES_ENC_TYPE uint256
#define ECIES_HMAC_ALGO EVP_sha256()
#define ECIES_HMAC_SIZE (256/8)
#define ECIES_HMAC_TYPE uint256
static void* ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen) static void* ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen)
{ // This function must not be changed as it must be what ECDH_compute_key expects { // This function must not be changed as it must be what ECDH_compute_key expects
if (*olen < SHA512_DIGEST_LENGTH) if (*olen < ECIES_KEY_LENGTH)
return NULL; return NULL;
*olen = SHA512_DIGEST_LENGTH; *olen = ECIES_KEY_LENGTH;
return SHA512(static_cast<const unsigned char *>(input), ilen, static_cast<unsigned char *>(output)); return ECIES_KEY_HASH(static_cast<const unsigned char *>(input), ilen, static_cast<unsigned char *>(output));
} }
std::vector<unsigned char> CKey::getECIESSecret(CKey& otherKey) std::vector<unsigned char> CKey::getECIESSecret(CKey& otherKey)
@@ -37,23 +46,25 @@ std::vector<unsigned char> CKey::getECIESSecret(CKey& otherKey)
} }
else throw std::runtime_error("no private key"); else throw std::runtime_error("no private key");
std::vector<unsigned char> ret(SHA512_DIGEST_LENGTH); std::vector<unsigned char> ret(ECIES_KEY_LENGTH);
if (ECDH_compute_key(&(ret.front()), SHA512_DIGEST_LENGTH, EC_KEY_get0_public_key(pubkey), if (ECDH_compute_key(&(ret.front()), ECIES_KEY_LENGTH, EC_KEY_get0_public_key(pubkey),
privkey, ecies_key_derivation) != SHA512_DIGEST_LENGTH) privkey, ecies_key_derivation) != ECIES_KEY_LENGTH)
throw std::runtime_error("ecdh key failed"); throw std::runtime_error("ecdh key failed");
return ret; return ret;
} }
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows: // Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
// 1) 256-bits of SHA-512 HMAC of original plaintext // 1) 256-bit IV (unencrypted)
// 2) Original plaintext // 2) Encrypted: 256-bits HMAC of original plaintext
// 3) Encrypted: Original plaintext
// 4) Encrypted: Rest of block/padding
static uint256 makeHMAC(const std::vector<unsigned char>& secret, const std::vector<unsigned char> data) static ECIES_HMAC_TYPE makeHMAC(const std::vector<unsigned char>& secret, const std::vector<unsigned char> data)
{ {
HMAC_CTX ctx; HMAC_CTX ctx;
HMAC_CTX_init(&ctx); HMAC_CTX_init(&ctx);
if(HMAC_Init_ex(&ctx, &(secret.front()), secret.size(), EVP_sha512(), NULL) != 1) if(HMAC_Init_ex(&ctx, &(secret.front()), secret.size(), ECIES_HMAC_ALGO, NULL) != 1)
{ {
HMAC_CTX_cleanup(&ctx); HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("init hmac"); throw std::runtime_error("init hmac");
@@ -72,10 +83,9 @@ static uint256 makeHMAC(const std::vector<unsigned char>& secret, const std::vec
HMAC_CTX_cleanup(&ctx); HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("finalize hmac"); throw std::runtime_error("finalize hmac");
} }
assert((ml>=32) && (ml<=EVP_MAX_MD_SIZE));
uint256 ret; ECIES_HMAC_TYPE ret;
memcpy(ret.begin(), &(hmac.front()), 32); memcpy(ret.begin(), &(hmac.front()), ECIES_HMAC_SIZE);
return ret; return ret;
} }
@@ -84,33 +94,33 @@ std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<
{ {
std::vector<unsigned char> secret=getECIESSecret(otherKey); std::vector<unsigned char> secret=getECIESSecret(otherKey);
uint256 hmac=makeHMAC(secret, plaintext); ECIES_HMAC_TYPE hmac=makeHMAC(secret, plaintext);
uint128 iv; uint128 iv;
if(RAND_bytes(static_cast<unsigned char *>(iv.begin()), 128/8) != 1) if(RAND_bytes(static_cast<unsigned char *>(iv.begin()), ECIES_ENC_SIZE) != 1)
throw std::runtime_error("insufficient entropy"); throw std::runtime_error("insufficient entropy");
EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx); EVP_CIPHER_CTX_init(&ctx);
if (EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, if (EVP_EncryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL,
&(secret.front()), static_cast<unsigned char *>(iv.begin())) != 1) &(secret.front()), static_cast<unsigned char *>(iv.begin())) != 1)
{ {
EVP_CIPHER_CTX_cleanup(&ctx); EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("init cipher ctx"); throw std::runtime_error("init cipher ctx");
} }
std::vector<unsigned char> out(plaintext.size() + (256/8) + (512/8) + 48, 0); std::vector<unsigned char> out(plaintext.size() + ECIES_HMAC_SIZE + (ECIES_ENC_SIZE*2), 0);
int len=0, bytesWritten; int len=0, bytesWritten;
// output 256-bit IV // output IV
memcpy(&(out.front()), iv.begin(), 32); memcpy(&(out.front()), iv.begin(), ECIES_ENC_SIZE);
len=32; len=ECIES_ENC_SIZE;
// Encrypt/output 512-bit HMAC // Encrypt/output HMAC
bytesWritten=out.capacity()-len; bytesWritten=out.capacity()-len;
assert(bytesWritten>0); assert(bytesWritten>0);
if(EVP_EncryptUpdate(&ctx, &(out.front())+len, &bytesWritten, hmac.begin(), 64) < 0) if(EVP_EncryptUpdate(&ctx, &(out.front())+len, &bytesWritten, hmac.begin(), ECIES_HMAC_SIZE) < 0)
{ {
EVP_CIPHER_CTX_cleanup(&ctx); EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error(""); throw std::runtime_error("");
@@ -145,14 +155,60 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
{ {
std::vector<unsigned char> secret=getECIESSecret(otherKey); std::vector<unsigned char> secret=getECIESSecret(otherKey);
// 1) Decrypt // minimum ciphertext = IV + HMAC + 1 block
if(ciphertext.size() < ((2*ECIES_ENC_SIZE)+ECIES_HMAC_SIZE) )
throw std::runtime_error("ciphertext too short");
// 2) Extract length and plaintext // extract IV
ECIES_ENC_TYPE iv;
// 3) Compute HMAC memcpy(iv.begin(), &(ciphertext.front()), ECIES_ENC_SIZE);
// 4) Verify
// begin decrypting
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
if(EVP_DecryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, &(secret.front()), iv.begin()) != 1)
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to init cipher");
}
// decrypt mac
ECIES_HMAC_TYPE hmac;
int outlen=ECIES_HMAC_SIZE;
if( (EVP_DecryptUpdate(&ctx, hmac.begin(), &outlen, &(ciphertext.front()), ECIES_HMAC_SIZE) != 1) ||
(outlen != ECIES_HMAC_SIZE) )
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract hmac");
}
// decrypt plaintext
std::vector<unsigned char> plaintext(ciphertext.size() - ECIES_HMAC_SIZE - ECIES_ENC_SIZE);
outlen=plaintext.size();
if(EVP_DecryptUpdate(&ctx, &(plaintext.front()), &outlen,
&(ciphertext.front())+ECIES_HMAC_SIZE, ciphertext.size()-ECIES_HMAC_SIZE) != 1)
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract plaintext");
}
int flen=0;
if(EVP_DecryptFinal(&ctx, &(plaintext.front()) + outlen, &flen) != 1)
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad padding");
}
plaintext.resize(flen+outlen);
if(hmac != makeHMAC(secret, plaintext))
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad hmac");
}
EVP_CIPHER_CTX_cleanup(&ctx);
return plaintext;
} }
// vim:ts=4 // vim:ts=4