Out of extreme paranoia, ensure HMAC key and ENC key are different.

This commit is contained in:
JoelKatz
2012-04-07 05:11:06 -07:00
parent 2467e668ac
commit c029ca8427
2 changed files with 43 additions and 31 deletions

View File

@@ -19,12 +19,12 @@
// Anonymous messages can be sent by generating an ephemeral public/private
// key pair, using that private key with the recipient's public key to
// encrypt and publishing the ephemeral public key. Non-anonymous messages
// can be sent by using your own private key with the recipeint's public key.
// can be sent by using your own private key with the recipient's public key.
// A random IV is used to encrypt the message and an HMAC is used to ensure
// message integrity. If you need timestamps or need to tell the recipient
// which key to use (his, yours, or ephemeral) you must add that data.
// (Obviously, it can't go in the encrypted portion anyway.)
// (Obviously, key information can't go in the encrypted portion anyway.)
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
// 1) IV (unencrypted)
@@ -33,29 +33,21 @@
// 4) Encrypted: Rest of block/padding
// Algorithmic choices:
#define ECIES_KEY_HASH SHA256 // Hash used to generate shared secret
#define ECIES_KEY_LENGTH (256/8) // Size of shared secret
#define ECIES_KEY_TYPE uint256 // Type used to hold shared secret
#define ECIES_KEY_HASH SHA512 // Hash used to expand shared secret
#define ECIES_KEY_LENGTH (512/8) // Size of expanded shared secret
#define ECIES_MIN_SEC (128/8) // The minimum equivalent security
#define ECIES_ENC_ALGO EVP_aes_256_cbc() // Encryption algorithm
#define ECIES_ENC_KEY_TYPE uint256 // Type used to hold shared secret
#define ECIES_ENC_KEY_SIZE (256/8) // Encryption key size
#define ECIES_ENC_BLK_SIZE (128/8) // Encryption block size
#define ECIES_ENC_IV_TYPE uint128 // Type used to hold IV
#define ECIES_HMAC_ALGO EVP_sha256() // HMAC algorithm
#define ECIES_HMAC_SIZE (256/8) // Size of HMAC
#define ECIES_HMAC_TYPE uint256 // Type used to hold HMAC
#define ECIES_HMAC_KEY_TYPE uint256 // Type used to hold HMAC key
#define ECIES_HMAC_KEY_SIZE (256/8) // Size of HMAC key
#define ECIES_HMAC_TYPE uint256 // Type used to hold HMAC value
#define ECIES_HMAC_SIZE (256/8) // Size of HMAC value
static void* ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen)
{ // This function must not be changed as it must be what ECDH_compute_key expects
if (*olen < ECIES_KEY_LENGTH)
{
assert(false);
return NULL;
}
*olen = ECIES_KEY_LENGTH;
return ECIES_KEY_HASH(static_cast<const unsigned char *>(input), ilen, static_cast<unsigned char *>(output));
}
ECIES_KEY_TYPE CKey::getECIESSecret(CKey& otherKey)
void CKey::getECIESSecret(CKey& otherKey, ECIES_ENC_KEY_TYPE& enc_key, ECIES_HMAC_KEY_TYPE& hmac_key)
{ // Retrieve a secret generated from an EC key pair. At least one private key must be known.
if(!pkey || !otherKey.pkey)
throw std::runtime_error("missing key");
@@ -73,19 +65,27 @@ ECIES_KEY_TYPE CKey::getECIESSecret(CKey& otherKey)
}
else throw std::runtime_error("no private key");
ECIES_KEY_TYPE key;
if (ECDH_compute_key(key.begin(), ECIES_KEY_LENGTH, EC_KEY_get0_public_key(pubkey),
privkey, ecies_key_derivation) != ECIES_KEY_LENGTH)
unsigned char rawbuf[512];
int buflen=ECDH_compute_key(rawbuf, 512, EC_KEY_get0_public_key(pubkey), privkey, NULL);
if(buflen < ECIES_MIN_SEC)
throw std::runtime_error("ecdh key failed");
return key;
unsigned char hbuf[ECIES_KEY_LENGTH];
ECIES_KEY_HASH(rawbuf, buflen, hbuf);
memset(rawbuf, 0, ECIES_HMAC_KEY_SIZE);
assert((ECIES_ENC_KEY_SIZE + ECIES_HMAC_KEY_SIZE) >= ECIES_KEY_LENGTH);
memcpy(enc_key.begin(), hbuf, ECIES_ENC_KEY_SIZE);
memcpy(hmac_key.begin(), hbuf + ECIES_ENC_KEY_SIZE, ECIES_HMAC_KEY_SIZE);
memset(hbuf, 0, ECIES_KEY_LENGTH);
}
static ECIES_HMAC_TYPE makeHMAC(const ECIES_KEY_TYPE& secret, const std::vector<unsigned char> data)
static ECIES_HMAC_TYPE makeHMAC(const ECIES_HMAC_KEY_TYPE& secret, const std::vector<unsigned char> data)
{
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
if(HMAC_Init_ex(&ctx, secret.begin(), ECIES_KEY_LENGTH, ECIES_HMAC_ALGO, NULL) != 1)
if(HMAC_Init_ex(&ctx, secret.begin(), ECIES_HMAC_KEY_SIZE, ECIES_HMAC_ALGO, NULL) != 1)
{
HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("init hmac");
@@ -117,8 +117,11 @@ std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<
if(RAND_bytes(static_cast<unsigned char *>(iv.begin()), ECIES_ENC_BLK_SIZE) != 1)
throw std::runtime_error("insufficient entropy");
ECIES_KEY_TYPE secret=getECIESSecret(otherKey);
ECIES_HMAC_TYPE hmac=makeHMAC(secret, plaintext);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret(otherKey, secret, hmacKey);
ECIES_HMAC_TYPE hmac=makeHMAC(hmacKey, plaintext);
hmacKey.zero();
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
@@ -189,10 +192,14 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
// begin decrypting
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
ECIES_KEY_TYPE secret=getECIESSecret(otherKey);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret(otherKey, secret, hmacKey);
if(EVP_DecryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to init cipher");
}
@@ -204,6 +211,7 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
&(ciphertext.front()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE + 1) != 1) || (outlen != ECIES_HMAC_SIZE) )
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract hmac");
}
@@ -216,6 +224,7 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
ciphertext.size() - ECIES_ENC_BLK_SIZE - ECIES_HMAC_SIZE - 1) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract plaintext");
}
@@ -225,19 +234,22 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
if(EVP_DecryptFinal(&ctx, &(plaintext.front()) + outlen, &flen) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad padding");
}
plaintext.resize(flen + outlen);
// verify integrity
if(hmac != makeHMAC(secret, plaintext))
if(hmac != makeHMAC(hmacKey, plaintext))
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad hmac");
}
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
return plaintext;
@@ -270,7 +282,7 @@ bool checkECIES(void)
std::vector<unsigned char> decrypt=recipientPriv.decryptECIES(senderPub, ciphertext);
if(decrypt != message) return false;
// std::cerr << "Msg(" << msglen << ") ok " << ciphertext.size() << std::endl;
std::cerr << "Msg(" << msglen << ") ok " << ciphertext.size() << std::endl;
}
return true;
}

View File

@@ -277,7 +277,7 @@ public:
// ECIES functions. These throw on failure
// returns a 32-byte secret unique to these two keys. At least one private key must be known.
uint256 getECIESSecret(CKey& otherKey);
void getECIESSecret(CKey& otherKey, uint256& enc_key, uint256& hmac_key);
// encrypt/decrypt functions with integrity checking.
// Note that the other side must somehow know what keys to use