Don't include unit test sources in code coverage (RIPD-1132):

Most files containing unit test code are moved to
src/test. JTx and the test client code are not yet moved.
This commit is contained in:
Brad Chase
2016-09-02 15:25:05 -04:00
committed by Vinnie Falco
parent 8687f64429
commit 8f97889176
165 changed files with 2090 additions and 1693 deletions

View File

@@ -0,0 +1,513 @@
//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <BeastConfig.h>
#include <ripple/basics/Log.h>
#include <ripple/protocol/SecretKey.h>
#include <ripple/protocol/st.h>
#include <ripple/json/json_reader.h>
#include <ripple/json/to_string.h>
#include <ripple/beast/unit_test.h>
#include <memory>
#include <type_traits>
namespace ripple {
class STObject_test : public beast::unit_test::suite
{
public:
bool parseJSONString (std::string const& json, Json::Value& to)
{
Json::Reader reader;
return reader.parse(json, to) &&
bool (to) &&
to.isObject();
}
void testParseJSONArrayWithInvalidChildrenObjects ()
{
testcase ("parse json array invalid children");
try
{
/*
STArray/STObject constructs don't really map perfectly to json
arrays/objects.
STObject is an associative container, mapping fields to value, but
an STObject may also have a Field as its name, stored outside the
associative structure. The name is important, so to maintain
fidelity, it will take TWO json objects to represent them.
*/
std::string faulty ("{\"Template\":[{"
"\"ModifiedNode\":{\"Sequence\":1}, "
"\"DeletedNode\":{\"Sequence\":1}"
"}]}");
std::unique_ptr<STObject> so;
Json::Value faultyJson;
bool parsedOK (parseJSONString(faulty, faultyJson));
unexpected(!parsedOK, "failed to parse");
STParsedJSONObject parsed ("test", faultyJson);
BEAST_EXPECT(! parsed.object);
}
catch(std::runtime_error& e)
{
std::string what(e.what());
unexpected (what.find("First level children of `Template`") != 0);
}
}
void testParseJSONArray ()
{
testcase ("parse json array");
std::string const json (
"{\"Template\":[{\"ModifiedNode\":{\"Sequence\":1}}]}");
Json::Value jsonObject;
bool parsedOK (parseJSONString(json, jsonObject));
if (parsedOK)
{
STParsedJSONObject parsed ("test", jsonObject);
std::string const& serialized (
to_string (parsed.object->getJson(0)));
BEAST_EXPECT(serialized == json);
}
else
{
fail ("Couldn't parse json: " + json);
}
}
void testSerialization ()
{
testcase ("serialization");
unexpected (sfGeneric.isUseful (), "sfGeneric must not be useful");
SField const& sfTestVL = SField::getField (STI_VL, 255);
SField const& sfTestH256 = SField::getField (STI_HASH256, 255);
SField const& sfTestU32 = SField::getField (STI_UINT32, 255);
SField const& sfTestV256 = SField::getField(STI_VECTOR256, 255);
SField const& sfTestObject = SField::getField (STI_OBJECT, 255);
SOTemplate elements;
elements.push_back (SOElement (sfFlags, SOE_REQUIRED));
elements.push_back (SOElement (sfTestVL, SOE_REQUIRED));
elements.push_back (SOElement (sfTestH256, SOE_OPTIONAL));
elements.push_back (SOElement (sfTestU32, SOE_REQUIRED));
elements.push_back (SOElement (sfTestV256, SOE_OPTIONAL));
STObject object1 (elements, sfTestObject);
STObject object2 (object1);
unexpected (object1.getSerializer () != object2.getSerializer (),
"STObject error 1");
unexpected (object1.isFieldPresent (sfTestH256) ||
!object1.isFieldPresent (sfTestVL), "STObject error");
object1.makeFieldPresent (sfTestH256);
unexpected (!object1.isFieldPresent (sfTestH256), "STObject Error 2");
unexpected (object1.getFieldH256 (sfTestH256) != uint256 (),
"STObject error 3");
if (object1.getSerializer () == object2.getSerializer ())
{
log <<
"O1: " << object1.getJson (0) << '\n' <<
"O2: " << object2.getJson (0) << std::endl;
fail ("STObject error 4");
}
else
{
pass ();
}
object1.makeFieldAbsent (sfTestH256);
unexpected (object1.isFieldPresent (sfTestH256), "STObject error 5");
unexpected (object1.getFlags () != 0, "STObject error 6");
unexpected (object1.getSerializer () != object2.getSerializer (),
"STObject error 7");
STObject copy (object1);
unexpected (object1.isFieldPresent (sfTestH256), "STObject error 8");
unexpected (copy.isFieldPresent (sfTestH256), "STObject error 9");
unexpected (object1.getSerializer () != copy.getSerializer (),
"STObject error 10");
copy.setFieldU32 (sfTestU32, 1);
unexpected (object1.getSerializer () == copy.getSerializer (),
"STObject error 11");
for (int i = 0; i < 1000; i++)
{
Blob j (i, 2);
object1.setFieldVL (sfTestVL, j);
Serializer s;
object1.add (s);
SerialIter it (s.slice());
STObject object3 (elements, it, sfTestObject);
unexpected (object1.getFieldVL (sfTestVL) != j, "STObject error");
unexpected (object3.getFieldVL (sfTestVL) != j, "STObject error");
}
{
std::vector<uint256> uints;
uints.reserve(5);
for (int i = 0; i < uints.capacity(); ++i)
{
uints.emplace_back(i);
}
object1.setFieldV256(sfTestV256, STVector256(uints));
Serializer s;
object1.add(s);
SerialIter it(s.slice());
STObject object3(elements, it, sfTestObject);
auto const& uints1 = object1.getFieldV256(sfTestV256);
auto const& uints3 = object3.getFieldV256(sfTestV256);
BEAST_EXPECT(uints1 == uints3);
}
}
// Exercise field accessors
void
testFields()
{
testcase ("fields");
auto const& sf1 = sfSequence;
auto const& sf2 = sfExpiration;
auto const& sf3 = sfQualityIn;
auto const& sf4 = sfSignature;
auto const& sf5 = sfPublicKey;
// read free object
{
auto const st = [&]()
{
STObject st(sfGeneric);
st.setFieldU32(sf1, 1);
st.setFieldU32(sf2, 2);
return st;
}();
BEAST_EXPECT(st[sf1] == 1);
BEAST_EXPECT(st[sf2] == 2);
except<missing_field_error>([&]()
{ st[sf3]; });
BEAST_EXPECT(*st[~sf1] == 1);
BEAST_EXPECT(*st[~sf2] == 2);
BEAST_EXPECT(st[~sf3] == boost::none);
BEAST_EXPECT(!! st[~sf1]);
BEAST_EXPECT(!! st[~sf2]);
BEAST_EXPECT(! st[~sf3]);
BEAST_EXPECT(st[sf1] != st[sf2]);
BEAST_EXPECT(st[~sf1] != st[~sf2]);
}
// read templated object
auto const sot = [&]()
{
SOTemplate sot;
sot.push_back(SOElement(sf1, SOE_REQUIRED));
sot.push_back(SOElement(sf2, SOE_OPTIONAL));
sot.push_back(SOElement(sf3, SOE_DEFAULT));
sot.push_back(SOElement(sf4, SOE_OPTIONAL));
sot.push_back(SOElement(sf5, SOE_DEFAULT));
return sot;
}();
{
auto const st = [&]()
{
STObject st(sot, sfGeneric);
st.setFieldU32(sf1, 1);
st.setFieldU32(sf2, 2);
return st;
}();
BEAST_EXPECT(st[sf1] == 1);
BEAST_EXPECT(st[sf2] == 2);
BEAST_EXPECT(st[sf3] == 0);
BEAST_EXPECT(*st[~sf1] == 1);
BEAST_EXPECT(*st[~sf2] == 2);
BEAST_EXPECT(*st[~sf3] == 0);
BEAST_EXPECT(!! st[~sf1]);
BEAST_EXPECT(!! st[~sf2]);
BEAST_EXPECT(!! st[~sf3]);
}
// write free object
{
STObject st(sfGeneric);
unexcept([&]() { st[sf1]; });
except([&](){ return st[sf1] == 0; });
BEAST_EXPECT(st[~sf1] == boost::none);
BEAST_EXPECT(st[~sf1] == boost::optional<std::uint32_t>{});
BEAST_EXPECT(st[~sf1] != boost::optional<std::uint32_t>(1));
BEAST_EXPECT(! st[~sf1]);
st[sf1] = 2;
BEAST_EXPECT(st[sf1] == 2);
BEAST_EXPECT(st[~sf1] != boost::none);
BEAST_EXPECT(st[~sf1] == boost::optional<std::uint32_t>(2));
BEAST_EXPECT(!! st[~sf1]);
st[sf1] = 1;
BEAST_EXPECT(st[sf1] == 1);
BEAST_EXPECT(!! st[sf1]);
BEAST_EXPECT(!! st[~sf1]);
st[sf1] = 0;
BEAST_EXPECT(! st[sf1]);
BEAST_EXPECT(!! st[~sf1]);
st[~sf1] = boost::none;
BEAST_EXPECT(! st[~sf1]);
BEAST_EXPECT(st[~sf1] == boost::none);
BEAST_EXPECT(st[~sf1] == boost::optional<std::uint32_t>{});
st[~sf1] = boost::none;
BEAST_EXPECT(! st[~sf1]);
except([&]() { return st[sf1] == 0; });
except([&]() { return *st[~sf1]; });
st[sf1] = 1;
BEAST_EXPECT(st[sf1] == 1);
BEAST_EXPECT(!! st[sf1]);
BEAST_EXPECT(!! st[~sf1]);
st[sf1] = 3;
st[sf2] = st[sf1];
BEAST_EXPECT(st[sf1] == 3);
BEAST_EXPECT(st[sf2] == 3);
BEAST_EXPECT(st[sf2] == st[sf1]);
st[sf1] = 4;
st[sf2] = st[sf1];
BEAST_EXPECT(st[sf1] == 4);
BEAST_EXPECT(st[sf2] == 4);
BEAST_EXPECT(st[sf2] == st[sf1]);
}
// Write templated object
{
STObject st(sot, sfGeneric);
BEAST_EXPECT(!! st[~sf1]);
BEAST_EXPECT(st[~sf1] != boost::none);
BEAST_EXPECT(st[sf1] == 0);
BEAST_EXPECT(*st[~sf1] == 0);
BEAST_EXPECT(! st[~sf2]);
BEAST_EXPECT(st[~sf2] == boost::none);
except([&]() { return st[sf2] == 0; });
BEAST_EXPECT(!! st[~sf3]);
BEAST_EXPECT(st[~sf3] != boost::none);
BEAST_EXPECT(st[sf3] == 0);
except([&]() { st[~sf1] = boost::none; });
st[sf1] = 1;
BEAST_EXPECT(st[sf1] == 1);
BEAST_EXPECT(*st[~sf1] == 1);
BEAST_EXPECT(!! st[~sf1]);
st[sf1] = 0;
BEAST_EXPECT(st[sf1] == 0);
BEAST_EXPECT(*st[~sf1] == 0);
BEAST_EXPECT(!! st[~sf1]);
st[sf2] = 2;
BEAST_EXPECT(st[sf2] == 2);
BEAST_EXPECT(*st[~sf2] == 2);
BEAST_EXPECT(!! st[~sf2]);
st[~sf2] = boost::none;
except([&]() { return *st[~sf2]; });
BEAST_EXPECT(! st[~sf2]);
st[sf3] = 3;
BEAST_EXPECT(st[sf3] == 3);
BEAST_EXPECT(*st[~sf3] == 3);
BEAST_EXPECT(!! st[~sf3]);
st[sf3] = 2;
BEAST_EXPECT(st[sf3] == 2);
BEAST_EXPECT(*st[~sf3] == 2);
BEAST_EXPECT(!! st[~sf3]);
st[sf3] = 0;
BEAST_EXPECT(st[sf3] == 0);
BEAST_EXPECT(*st[~sf3] == 0);
BEAST_EXPECT(!! st[~sf3]);
except([&]() { st[~sf3] = boost::none; });
BEAST_EXPECT(st[sf3] == 0);
BEAST_EXPECT(*st[~sf3] == 0);
BEAST_EXPECT(!! st[~sf3]);
}
// coercion operator to boost::optional
{
STObject st(sfGeneric);
auto const v = ~st[~sf1];
static_assert(std::is_same<
std::decay_t<decltype(v)>,
boost::optional<std::uint32_t>>::value, "");
}
// UDT scalar fields
{
STObject st(sfGeneric);
st[sfAmount] = STAmount{};
st[sfAccount] = AccountID{};
st[sfDigest] = uint256{};
[&](STAmount){}(st[sfAmount]);
[&](AccountID){}(st[sfAccount]);
[&](uint256){}(st[sfDigest]);
}
// STBlob and slice
{
{
STObject st(sfGeneric);
Buffer b(1);
BEAST_EXPECT(! b.empty());
st[sf4] = std::move(b);
BEAST_EXPECT(b.empty());
BEAST_EXPECT(Slice(st[sf4]).size() == 1);
st[~sf4] = boost::none;
BEAST_EXPECT(! ~st[~sf4]);
b = Buffer{2};
st[sf4] = Slice(b);
BEAST_EXPECT(b.size() == 2);
BEAST_EXPECT(Slice(st[sf4]).size() == 2);
st[sf5] = st[sf4];
BEAST_EXPECT(Slice(st[sf4]).size() == 2);
BEAST_EXPECT(Slice(st[sf5]).size() == 2);
}
{
STObject st(sot, sfGeneric);
BEAST_EXPECT(st[sf5] == Slice{});
BEAST_EXPECT(!! st[~sf5]);
BEAST_EXPECT(!! ~st[~sf5]);
Buffer b(1);
st[sf5] = std::move(b);
BEAST_EXPECT(b.empty());
BEAST_EXPECT(Slice(st[sf5]).size() == 1);
st[~sf4] = boost::none;
BEAST_EXPECT(! ~st[~sf4]);
}
}
// UDT blobs
{
STObject st(sfGeneric);
BEAST_EXPECT(! st[~sf5]);
auto const kp = generateKeyPair(
KeyType::secp256k1,
generateSeed("masterpassphrase"));
st[sf5] = kp.first;
BEAST_EXPECT(st[sf5] != PublicKey{});
st[~sf5] = boost::none;
#if 0
pk = st[sf5];
BEAST_EXPECT(pk.size() == 0);
#endif
}
// By reference fields
{
auto const& sf = sfIndexes;
STObject st(sfGeneric);
std::vector<uint256> v;
v.emplace_back(1);
v.emplace_back(2);
st[sf] = v;
st[sf] = std::move(v);
auto const& cst = st;
BEAST_EXPECT(cst[sf].size() == 2);
BEAST_EXPECT(cst[~sf]->size() == 2);
BEAST_EXPECT(cst[sf][0] == 1);
BEAST_EXPECT(cst[sf][1] == 2);
static_assert(std::is_same<decltype(cst[sfIndexes]),
std::vector<uint256> const&>::value, "");
}
// Default by reference field
{
auto const& sf1 = sfIndexes;
auto const& sf2 = sfHashes;
auto const& sf3 = sfAmendments;
auto const sot = [&]()
{
SOTemplate sot;
sot.push_back(SOElement(sf1, SOE_REQUIRED));
sot.push_back(SOElement(sf2, SOE_OPTIONAL));
sot.push_back(SOElement(sf3, SOE_DEFAULT));
return sot;
}();
STObject st(sot, sfGeneric);
auto const& cst(st);
BEAST_EXPECT(cst[sf1].size() == 0);
BEAST_EXPECT(! cst[~sf2]);
BEAST_EXPECT(cst[sf3].size() == 0);
std::vector<uint256> v;
v.emplace_back(1);
st[sf1] = v;
BEAST_EXPECT(cst[sf1].size() == 1);
BEAST_EXPECT(cst[sf1][0] == uint256{1});
st[sf2] = v;
BEAST_EXPECT(cst[sf2].size() == 1);
BEAST_EXPECT(cst[sf2][0] == uint256{1});
st[~sf2] = boost::none;
BEAST_EXPECT(! st[~sf2]);
st[sf3] = v;
BEAST_EXPECT(cst[sf3].size() == 1);
BEAST_EXPECT(cst[sf3][0] == uint256{1});
st[sf3] = std::vector<uint256>{};
BEAST_EXPECT(cst[sf3].size() == 0);
}
}
void
run()
{
testFields();
testSerialization();
testParseJSONArray();
testParseJSONArrayWithInvalidChildrenObjects();
}
};
BEAST_DEFINE_TESTSUITE(STObject,protocol,ripple);
} // ripple